import numpy as np import gradio as gr import pandas as pd from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.datasets import fetch_openml from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OrdinalEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split import utils def app_fn(seed: int, n_cat: int, n_estimators: int, min_samples_leaf: int): X, y = fetch_openml( "titanic", version=1, as_frame=True, return_X_y=True, parser="pandas" ) rng = np.random.RandomState(seed=seed) X["random_cat"] = rng.randint(n_cat, size=X.shape[0]) X["random_num"] = rng.randn(X.shape[0]) categorical_columns = ["pclass", "sex", "embarked", "random_cat"] numerical_columns = ["age", "sibsp", "parch", "fare", "random_num"] X = X[categorical_columns + numerical_columns] X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=seed) categorical_encoder = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=-1, encoded_missing_value=-1 ) numerical_pipe = SimpleImputer(strategy="mean") preprocessing = ColumnTransformer( [ ("cat", categorical_encoder, categorical_columns), ("num", numerical_pipe, numerical_columns), ], verbose_feature_names_out=False, ) clf = Pipeline( [ ("preprocess", preprocessing), ("classifier", RandomForestClassifier( random_state=seed, n_estimators=n_estimators, min_samples_leaf=min_samples_leaf ) ), ] ) clf.fit(X_train, y_train) fig_mdi = utils.plot_rf_importance(clf) fig_perm_train = utils.plot_permutation_boxplot(clf, X_train, y_train, set_="train set") fig_perm_test = utils.plot_permutation_boxplot(clf, X_test, y_test, set_="test set") return fig_mdi, fig_perm_train, fig_perm_test title = "Permutation Importance vs Random Forest Feature Importance (MDI)" with gr.Blocks(title=title) as demo: gr.Markdown(f"# {title}") gr.Markdown( """ This demo compares the feature importances of a Random Forest classifier using the Mean Decrease Impurity (MDI) method and the Permutation Importance method. \ To showcase the difference between the two methods, we add two random features to the Titanic dataset. \ The first random feature is categorical and the second one is numerical. \ The categorical feature can have its number of categories changed \ and the numerical feature is sampled from a Standard Normal Distribution. \ Random Forest hyperparameters can also be changed to verify the impact of model complexity on the feature importances. See the original scikit-learn example [here](https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html#sphx-glr-auto-examples-inspection-plot-permutation-importance-py). """ ) with gr.Row(): seed = gr.inputs.Slider(0, 42, 1, default=42, label="Seed") n_cat = gr.inputs.Slider(2, 30, 1, default=3, label="Number of categories in random_cat") n_estimators = gr.inputs.Slider(5, 150, 5, default=100, label="Number of Trees") min_samples_leaf = gr.inputs.Slider(1, 30, 5, default=1, label="Minimum number of samples to create a leaf") fig_mdi = gr.Plot(label="Mean Decrease Impurity (MDI)") with gr.Row(): fig_perm_train = gr.Plot(label="Permutation Importance (Train)") fig_perm_test = gr.Plot(label="Permutation Importance (Test)") seed.change(fn=app_fn, outputs=[fig_mdi, fig_perm_train, fig_perm_test], inputs=[seed, n_cat, n_estimators, min_samples_leaf]) n_cat.change(fn=app_fn, outputs=[fig_mdi, fig_perm_train, fig_perm_test], inputs=[seed, n_cat, n_estimators, min_samples_leaf]) n_estimators.change(fn=app_fn, outputs=[fig_mdi, fig_perm_train, fig_perm_test], inputs=[seed, n_cat, n_estimators, min_samples_leaf]) min_samples_leaf.change(fn=app_fn, outputs=[fig_mdi, fig_perm_train, fig_perm_test], inputs=[seed, n_cat, n_estimators, min_samples_leaf]) demo.load(fn=app_fn, outputs=[fig_mdi, fig_perm_train, fig_perm_test], inputs=[seed, n_cat, n_estimators, min_samples_leaf]) demo.launch()