from turtle import title import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_species_distributions from sklearn.neighbors import KernelDensity import gradio as gr def construct_grids(batch): xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) xgrid = np.arange(xmin, xmax, batch.grid_size) ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def plot_species_distributions(bandwidth): data = fetch_species_distributions() species_names = ["Bradypus Variegatus", "Microryzomys Minutus"] Xtrain = np.vstack([data["train"]["dd lat"], data["train"]["dd long"]]).T ytrain = np.array( [d.decode("ascii").startswith("micro") for d in data["train"]["species"]], dtype="int", ) Xtrain *= np.pi / 180.0 xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180.0 fig = plt.figure() fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) print(" - computing KDE in spherical coordinates") kde = KernelDensity( bandwidth=bandwidth, metric="haversine", kernel="gaussian", algorithm="ball_tree" ) kde.fit(Xtrain[ytrain == i]) Z = np.full(land_mask.shape[0], -9999, dtype="int") Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.contour( X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid" ) plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) return plt bandwidth_input = gr.inputs.Slider(minimum=0.01, maximum=0.3, default=0.01, step=0.01, label="Bandwidth") title="Kernel Density Estimate of Species Distributions" description="This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric – i.e. distances over points in latitude/longitude. The dataset is provided by Phillips et. al. (2006). If available, the example uses basemap to plot the coast lines and national boundaries of South America. See the original scikit-learn example here: https://scikit-learn.org/stable/auto_examples/neighbors/plot_species_kde.html" iface = gr.Interface(fn=plot_species_distributions, title = title, description=description, inputs=bandwidth_input, outputs="plot") iface.launch()