import gradio as gr from sklearn.pipeline import make_pipeline from sklearn.metrics import roc_curve, auc from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import FunctionTransformer, OneHotEncoder from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, RandomTreesEmbedding import utils def app_fn(n_samples: int, n_estimators: int, max_depth: int): # Create Data (X_train_ensemble, y_train_ensemble), \ (X_train_linear, y_train_linear), \ (X_test, y_test) = utils.create_and_split_dataset(n_samples) # Creating and fitting Random Forest random_forest = RandomForestClassifier( n_estimators=n_estimators, max_depth=max_depth, random_state=10 ) random_forest.fit(X_train_ensemble, y_train_ensemble) # Creating and fitting Gradient Boosting gradient_boosting = GradientBoostingClassifier( n_estimators=n_estimators, max_depth=max_depth, random_state=10 ) _ = gradient_boosting.fit(X_train_ensemble, y_train_ensemble) # Creating and fitting Pipeline of Random Tree Embedding w/ Logistic Regression random_tree_embedding = RandomTreesEmbedding( n_estimators=n_estimators, max_depth=max_depth, random_state=0 ) rt_model = make_pipeline(random_tree_embedding, LogisticRegression(max_iter=1000)) rt_model.fit(X_train_linear, y_train_linear) # Creating and fitting Pipeline of Random Forest Embedding w/ Logistic Regression rf_leaves_yielder = FunctionTransformer(utils.rf_apply, kw_args={"model": random_forest}) rf_model = make_pipeline( rf_leaves_yielder, OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=1000), ) rf_model.fit(X_train_linear, y_train_linear) # Creating and fitting Pipeline of Gradient Boosting Embedding w/ Logistic Regression gbdt_leaves_yielder = FunctionTransformer( utils.gbdt_apply, kw_args={"model": gradient_boosting} ) gbdt_model = make_pipeline( gbdt_leaves_yielder, OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=1000), ) gbdt_model.fit(X_train_linear, y_train_linear) # Plotting ROC Curve models = [ ("RT embedding -> LR", rt_model), ("RF", random_forest), ("RF embedding -> LR", rf_model), ("GBDT", gradient_boosting), ("GBDT embedding -> LR", gbdt_model), ] fig = utils.plot_roc( X_test, y_test, models ) return fig title="Feature Transformations with Ensembles of Trees 🌳" with gr.Blocks(title=title) as demo: gr.Markdown(f"# {title}") gr.Markdown( """ This example shows how one can apply features transformations using ensembles of trees \ on a synthetic dataset. The transformations are then used to train a linear model on the \ transformed data. The plot shows the ROC curve of the different models trained on the \ transformed data. The plot is interactive and you can zoom in and out. See original example [here](https://scikit-learn.org/stable/auto_examples/ensemble/plot_feature_transformation.html#sphx-glr-auto-examples-ensemble-plot-feature-transformation-py). """ ) with gr.Row(): n_samples = gr.inputs.Slider(50_000, 100_000, 1000, label="Number of Samples", default=80_000) n_estimators = gr.inputs.Slider(10, 100, 10, label="Number of Estimators", default=10) max_depth = gr.inputs.Slider(1, 10, 1, label="Max Depth", default=3) plot = gr.Plot(label="ROC Curve") n_samples.change(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot]) n_estimators.change(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot]) max_depth.change(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot]) demo.load(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot]) demo.launch()