import gradio as gr import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs import time from sklearn.cluster import KMeans, MiniBatchKMeans from sklearn.metrics.pairwise import pairwise_distances_argmin model_card = f""" ## Description This demo compares the performance of the **MiniBatchKMeans** and **KMeans**. The MiniBatchKMeans is faster, but gives slightly different results. The points that are labelled differently between the two algorithms are also plotted. You can play around with different ``number of samples`` and ``number of mini batch size`` to see the effect ## Dataset Simulation dataset """ def do_train(n_samples, batch_size): np.random.seed(0) centers = np.random.rand(3, 2) n_clusters = len(centers) X, labels_true = make_blobs(n_samples=n_samples, centers=centers, cluster_std=0.7) k_means = KMeans(init="k-means++", n_clusters=n_clusters, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 mbk = MiniBatchKMeans( init="k-means++", n_clusters=n_clusters, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0, ) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 k_means_cluster_centers = k_means.cluster_centers_ order = pairwise_distances_argmin(k_means.cluster_centers_, mbk.cluster_centers_) mbk_means_cluster_centers = mbk.cluster_centers_[order] k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers) mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers) colors = ["#4EACC5", "#FF9C34", "#4E9A06"] # KMeans fig1, axes1 = plt.subplots() for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] axes1.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".", markersize=15) axes1.plot( cluster_center[0], cluster_center[1], "o", markerfacecolor=col, markeredgecolor="k", markersize=12, ) axes1.set_title("KMeans") axes1.set_xticks(()) axes1.set_yticks(()) # MiniBatchKMeans fig2, axes2 = plt.subplots() for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == k cluster_center = mbk_means_cluster_centers[k] axes2.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".", markersize=15) axes2.plot( cluster_center[0], cluster_center[1], "o", markerfacecolor=col, markeredgecolor="k", markersize=12, ) axes2.set_title("MiniBatchKMeans") axes2.set_xticks(()) axes2.set_yticks(()) # Initialize the different array to all False different = mbk_means_labels == 4 fig3, axes3 = plt.subplots() for k in range(n_clusters): different += (k_means_labels == k) != (mbk_means_labels == k) identic = np.logical_not(different) axes3.plot(X[identic, 0], X[identic, 1], "w", markerfacecolor="#bbbbbb", marker=".", markersize=15) axes3.plot(X[different, 0], X[different, 1], "w", markerfacecolor="m", marker=".", markersize=15) axes3.set_title("Difference") axes3.set_xticks(()) axes3.set_yticks(()) text = f"KMeans Train time: {t_batch:.2f}s Inertia: {k_means.inertia_:.4f}. MiniBatchKMeans Train time: {t_mini_batch:.2f}s Inertia: {mbk.inertia_:.4f}" plt.close() return fig1, fig2, fig3, text with gr.Blocks() as demo: gr.Markdown('''

Comparison of the K-Means and MiniBatchKMeans clustering algorithms

''') gr.Markdown(model_card) gr.Markdown("Author: Vu Minh Chien. Based on the example from scikit-learn") n_samples = gr.Slider(minimum=500, maximum=5000, step=500, value=500, label="Number of samples") batch_size = gr.Slider(minimum=100, maximum=2000, step=100, value=100, label="Size of the mini batches") with gr.Row(): with gr.Column(): plot1 = gr.Plot(label="KMeans") with gr.Column(): plot2 = gr.Plot(label="MiniBatchKMeans") with gr.Column(): plot3 = gr.Plot(label="Difference") with gr.Row(): results = gr.Textbox(label="Results") n_samples.change(fn=do_train, inputs=[n_samples, batch_size], outputs=[plot1, plot2, plot3, results]) batch_size.change(fn=do_train, inputs=[n_samples, batch_size], outputs=[plot1, plot2, plot3, results]) demo.launch()