import gradio as gr import numpy as np def custom_composite(im): # Get image dimensions and check the number of channels h, w, c = im["background"].shape # c could be 3 (RGB) or 4 (RGBA) # Create a black background with 3 channels (RGB) black_bg = np.zeros((h, w, 3), dtype=np.uint8) # Extract layers, ensuring they have 3 channels (RGB) def to_rgb(layer): return ( layer[:, :, :3] if layer.shape[2] == 4 else layer ) # Drop alpha if present layer1 = to_rgb(im["layers"][0]) if len(im["layers"]) > 0 else black_bg layer2 = to_rgb(im["layers"][1]) if len(im["layers"]) > 1 else black_bg # Merge layers onto the black background final_composite = np.where(layer1 > 0, layer1, black_bg) final_composite = np.where(layer2 > 0, layer2, final_composite) return final_composite with gr.Blocks() as demo: with gr.Row(): im = gr.ImageEditor( type="numpy", crop_size="1:1", brush=gr.Brush(default_color="white") ) im_preview = gr.Image(format="png") im.change(custom_composite, outputs=im_preview, inputs=im, show_progress="hidden") if __name__ == "__main__": demo.launch()