Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- app.py +140 -0
- from huggingface_hub import HfApi.py +8 -0
- requirements.txt +2 -0
- test42.db +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
test42.db filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit.logger import get_logger
|
3 |
+
import gematriapy
|
4 |
+
|
5 |
+
from timeit import default_timer as timer
|
6 |
+
import sqlite3
|
7 |
+
import pandas as pd
|
8 |
+
import ast
|
9 |
+
import pymongo
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
LOGGER = get_logger(__name__)
|
14 |
+
|
15 |
+
@st.cache_resource
|
16 |
+
def get_dfs()->object:
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
def to_daf_long(i:int)->str:
|
20 |
+
if i>0 and i<999:
|
21 |
+
i+=1
|
22 |
+
if i%2 ==0:
|
23 |
+
return gematriapy.to_hebrew(i//2)+' ืขืืื ื '
|
24 |
+
else:
|
25 |
+
return gematriapy.to_hebrew(i//2)+' ืขืืื ื'
|
26 |
+
return i
|
27 |
+
|
28 |
+
def gematria(i)->str:
|
29 |
+
if type(i) == int and i>0 and i<999:
|
30 |
+
return gematriapy.to_hebrew(i) + ' '
|
31 |
+
else: return i if type(i)==str else ''
|
32 |
+
|
33 |
+
# //get the books table//
|
34 |
+
print('hello from get_dfs..')
|
35 |
+
# Connect to the database
|
36 |
+
conn = sqlite3.connect('test42.db')
|
37 |
+
|
38 |
+
# Query the database and retrieve the results
|
39 |
+
cursor = conn.execute("SELECT * FROM books")
|
40 |
+
results = cursor.fetchall()
|
41 |
+
|
42 |
+
# Convert the query results into a Pandas DataFrame
|
43 |
+
books = pd.DataFrame(list(results))
|
44 |
+
books.columns=list(map(lambda x: x[0], cursor.description))
|
45 |
+
|
46 |
+
# convert the array format string "["Section","Section"]" that came from the database into a real array [Section,Section]
|
47 |
+
books['heSectionNames']=books['heSectionNames'].apply(lambda x: ast.literal_eval(x) if x is not None else [''] )
|
48 |
+
|
49 |
+
# //get the texts table//
|
50 |
+
|
51 |
+
# Query the database and retrieve the results
|
52 |
+
cursor = conn.execute("SELECT * FROM texts")
|
53 |
+
results = cursor.fetchall()
|
54 |
+
|
55 |
+
# Convert the query results into a Pandas DataFrame
|
56 |
+
texts = pd.DataFrame(results)
|
57 |
+
texts.columns=list(map(lambda x: x[0], cursor.description))
|
58 |
+
|
59 |
+
# get the table that includes the titles, from the MongoDB database - b/c the sqlite just don't have it
|
60 |
+
# Query the database and retrieve the results
|
61 |
+
cursor = conn.execute("SELECT * FROM titles")
|
62 |
+
results = cursor.fetchall()
|
63 |
+
|
64 |
+
# Convert the query results into a Pandas DataFrame
|
65 |
+
titles = pd.DataFrame(results)
|
66 |
+
titles.columns=list(map(lambda x: x[0], cursor.description))
|
67 |
+
# merge the texts with the original books table (without the extra hebrew titles)
|
68 |
+
merged = pd.merge(texts,books,how='inner',left_on='bid',right_on='_id')
|
69 |
+
|
70 |
+
#convert the Talmud marks (1,2,3...) into dafs (ื ืขืืื ื..)
|
71 |
+
has_dafs = merged.loc[merged['heSectionNames'].apply(lambda x: True if len(x)>1 and x[-2] == 'ืืฃ' else False)==True]
|
72 |
+
merged.loc[has_dafs.index,'level2'] = has_dafs['level2'].map(to_daf_long)
|
73 |
+
|
74 |
+
# create a reference text, for exapmle: ืจืฉ"ื ืขื ืืจืืฉืืช ืคืจืง ื ืคืกืืง ื
|
75 |
+
merged['ref_text_long']= merged['heTitle'] + ' ' + \
|
76 |
+
merged['heSectionNames'].map(lambda x:x[-4] + ' ' if len(x)>3 else "") + merged['level4'].map(gematria) + \
|
77 |
+
merged['heSectionNames'].map(lambda x:x[-3] + ' ' if len(x)>2 else "") + merged['level3'].map(gematria) + \
|
78 |
+
merged['heSectionNames'].map(lambda x:x[-2] + ' ' if len(x)>1 else "") + merged['level2'].map(gematria)
|
79 |
+
|
80 |
+
titles_df = titles
|
81 |
+
texts_df = merged
|
82 |
+
return titles_df, texts_df
|
83 |
+
|
84 |
+
|
85 |
+
def find_ref(titles_df,texts_df,input_text,top_k,num_of_results):
|
86 |
+
from rapidfuzz import process as rapidfuzz_process
|
87 |
+
print('hello from find_ref..')
|
88 |
+
if not input_text: return
|
89 |
+
|
90 |
+
results = []
|
91 |
+
books = titles_df['he_titles']
|
92 |
+
input_text = input_text.replace(':','ืขืืื ื').replace('.','ืขืืื ื')
|
93 |
+
|
94 |
+
# search only the references database in case the user set the top_k to 0
|
95 |
+
if top_k == 0:
|
96 |
+
refs = texts_df['ref_text_long'].unique()
|
97 |
+
for ref, ref_score, _ in rapidfuzz_process.extract(input_text, refs, limit=num_of_results):
|
98 |
+
results += [{'ref':ref,'ref_score':ref_score}]
|
99 |
+
|
100 |
+
else:
|
101 |
+
# search first only in the books database (for top_k books)
|
102 |
+
for book, book_score, _ in rapidfuzz_process.extract(input_text, books, limit=top_k):
|
103 |
+
# get all the references of that book
|
104 |
+
book_title = list(titles_df.loc[titles_df['he_titles']==book]['title'])[0]
|
105 |
+
refs = texts_df.loc[texts_df['title']==book_title]['ref_text_long'].unique()
|
106 |
+
# then search these references and add them all to the results
|
107 |
+
for ref, ref_score, _ in rapidfuzz_process.extract(input_text, refs, limit=10):
|
108 |
+
results += [{'ref':ref,'ref_score':ref_score,'book':book,'book_score':book_score}]
|
109 |
+
# finaly, sort all the references by their own score (and not the book score)
|
110 |
+
results.sort(key=lambda x: x['ref_score'],reverse=True)
|
111 |
+
|
112 |
+
return results[:num_of_results]
|
113 |
+
|
114 |
+
|
115 |
+
def run():
|
116 |
+
|
117 |
+
st.set_page_config(
|
118 |
+
page_title=" ืืืคืืฉ ืืงืืจืืช",
|
119 |
+
page_icon="๐",
|
120 |
+
layout="wide",
|
121 |
+
initial_sidebar_state="expanded"
|
122 |
+
)
|
123 |
+
get_dfs()
|
124 |
+
st.write("# ืืืคืืฉ ืืงืืจืืช ืืืืฆืขืืช ืืจืืง ืืืื ืฉืืืื")
|
125 |
+
|
126 |
+
titles_df,texts_df = get_dfs()
|
127 |
+
user_input = st.text_input('ืืชืื ืืช ืืืงืืจ ืืืืืงืฉ', placeholder='ืืื ืงืื ืืฃ ื ืขืืื ื')
|
128 |
+
top_k = st.sidebar.slider('ืืื ืกืคืจืื ืืกืจืืง top_k:',0,20,10)
|
129 |
+
num_of_results = st.sidebar.slider('ืืกืคืจ ืืชืืฆืืืช ืฉืืจืฆืื ื ืืืฆืื:',1,25,5)
|
130 |
+
|
131 |
+
if user_input!="":
|
132 |
+
time0 = timer()
|
133 |
+
results = find_ref(titles_df,texts_df,user_input,top_k,num_of_results)
|
134 |
+
time = f"finished in {1e3*(timer()-time0):.1f} ms"
|
135 |
+
st.write(time)
|
136 |
+
for result in results:
|
137 |
+
st.write(result)
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
run()
|
from huggingface_hub import HfApi.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import HfApi
|
2 |
+
api = HfApi()
|
3 |
+
|
4 |
+
api.upload_folder(
|
5 |
+
folder_path="./",
|
6 |
+
repo_id="sivan22/sefaria-ref-finder",
|
7 |
+
repo_type="space",
|
8 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gematriapy
|
2 |
+
pandas
|
test42.db
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76e5c2fa4efd1ec73ec3babf569b831182849d1ce1e46fdadbd2a6e54aa538c4
|
3 |
+
size 2063155200
|