# Necessary imports import gradio as gr from transformers import pipeline # Load the zero-shot classification model classifier = pipeline( "zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v2.0" ) # Function to perform zero-shot classification def ZeroShotTextClassification(text_input, candidate_labels): """ Performs zero-shot classification on the given text input using the provided candidate labels. Args: - text_input (str): The input text to classify. - candidate_labels (str): A comma-separated string of candidate labels. Returns: dict: A dictionary containing the predicted labels as keys and their corresponding scores as values. """ # Split the candidate labels labels = [label.strip(" ") for label in candidate_labels.split(",")] # Perform zero-shot classification prediction = classifier(text_input, labels) return { prediction["labels"][i]: prediction["scores"][i] for i in range(len(prediction["labels"])) } # Examples to display in the interface examples = [ ["I love to play the guitar", "music, artist, food, travel"], ["I am a software engineer at Google", "technology, engineering, art, science"], ["I am a professional basketball player", "sports, athlete, chef, politics"], ] # Title and description and article for the interface title = "Zero Shot Text Classification" description = "Classify text using zero-shot classification with DeBERTa-v3-large-zeroshot model! Provide a text input and a list of candidate labels separated by commas. Read more at the links below." article = "

Building Efficient Universal Classifiers with Natural Language Inference | Model Page

" # Launch the interface demo = gr.Interface( fn=ZeroShotTextClassification, inputs=[gr.Textbox(label="Input"), gr.Textbox(label="Candidate Labels")], outputs=gr.Label(label="Classification"), title=title, description=description, article=article, examples=examples, cache_examples="lazy", theme="Soft", flagging_mode="never", ) demo.launch(debug=False)