import torch import os import gc import sys import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict from einops import rearrange from diffusers.utils.torch_utils import randn_tensor import numpy as np import math import random import PIL from PIL import Image from tqdm import tqdm from torchvision import transforms from copy import deepcopy from typing import Any, Callable, Dict, List, Optional, Union from accelerate import Accelerator, cpu_offload from diffusion_schedulers import PyramidFlowMatchEulerDiscreteScheduler from video_vae.modeling_causal_vae import CausalVideoVAE from trainer_misc import ( all_to_all, is_sequence_parallel_initialized, get_sequence_parallel_group, get_sequence_parallel_group_rank, get_sequence_parallel_rank, get_sequence_parallel_world_size, get_rank, ) from .mmdit_modules import ( PyramidDiffusionMMDiT, SD3TextEncoderWithMask, ) from .flux_modules import ( PyramidFluxTransformer, FluxTextEncoderWithMask, ) def compute_density_for_timestep_sampling( weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None ): if weighting_scheme == "logit_normal": # See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$). u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu") u = torch.nn.functional.sigmoid(u) elif weighting_scheme == "mode": u = torch.rand(size=(batch_size,), device="cpu") u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u) else: u = torch.rand(size=(batch_size,), device="cpu") return u def build_pyramid_dit( model_name : str, model_path : str, torch_dtype, use_flash_attn : bool, use_mixed_training: bool, interp_condition_pos: bool = True, use_gradient_checkpointing: bool = False, use_temporal_causal: bool = True, gradient_checkpointing_ratio: float = 0.6, ): model_dtype = torch.float32 if use_mixed_training else torch_dtype if model_name == "pyramid_flux": dit = PyramidFluxTransformer.from_pretrained( model_path, torch_dtype=model_dtype, use_gradient_checkpointing=use_gradient_checkpointing, gradient_checkpointing_ratio=gradient_checkpointing_ratio, use_flash_attn=use_flash_attn, use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos, axes_dims_rope=[16, 24, 24], ) elif model_name == "pyramid_mmdit": dit = PyramidDiffusionMMDiT.from_pretrained( model_path, torch_dtype=model_dtype, use_gradient_checkpointing=use_gradient_checkpointing, gradient_checkpointing_ratio=gradient_checkpointing_ratio, use_flash_attn=use_flash_attn, use_t5_mask=True, add_temp_pos_embed=True, temp_pos_embed_type='rope', use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos, ) else: raise NotImplementedError(f"Unsupported DiT architecture, please set the model_name to `pyramid_flux` or `pyramid_mmdit`") return dit def build_text_encoder( model_name : str, model_path : str, torch_dtype, load_text_encoder: bool = True, ): # The text encoder if load_text_encoder: if model_name == "pyramid_flux": text_encoder = FluxTextEncoderWithMask(model_path, torch_dtype=torch_dtype) elif model_name == "pyramid_mmdit": text_encoder = SD3TextEncoderWithMask(model_path, torch_dtype=torch_dtype) else: raise NotImplementedError(f"Unsupported Text Encoder architecture, please set the model_name to `pyramid_flux` or `pyramid_mmdit`") else: text_encoder = None return text_encoder class PyramidDiTForVideoGeneration: """ The pyramid dit for both image and video generation, The running class wrapper This class is mainly for fixed unit implementation: 1 + n + n + n """ def __init__(self, model_path, model_dtype='bf16', model_name='pyramid_mmdit', use_gradient_checkpointing=False, return_log=True, model_variant="diffusion_transformer_768p", timestep_shift=1.0, stage_range=[0, 1/3, 2/3, 1], sample_ratios=[1, 1, 1], scheduler_gamma=1/3, use_mixed_training=False, use_flash_attn=False, load_text_encoder=True, load_vae=True, max_temporal_length=31, frame_per_unit=1, use_temporal_causal=True, corrupt_ratio=1/3, interp_condition_pos=True, stages=[1, 2, 4], video_sync_group=8, gradient_checkpointing_ratio=0.6, **kwargs, ): super().__init__() if model_dtype == 'bf16': torch_dtype = torch.bfloat16 elif model_dtype == 'fp16': torch_dtype = torch.float16 else: torch_dtype = torch.float32 self.stages = stages self.sample_ratios = sample_ratios self.corrupt_ratio = corrupt_ratio dit_path = os.path.join(model_path, model_variant) # The dit self.dit = build_pyramid_dit( model_name, dit_path, torch_dtype, use_flash_attn=use_flash_attn, use_mixed_training=use_mixed_training, interp_condition_pos=interp_condition_pos, use_gradient_checkpointing=use_gradient_checkpointing, use_temporal_causal=use_temporal_causal, gradient_checkpointing_ratio=gradient_checkpointing_ratio, ) # The text encoder self.text_encoder = build_text_encoder( model_name, model_path, torch_dtype, load_text_encoder=load_text_encoder, ) self.load_text_encoder = load_text_encoder # The base video vae decoder if load_vae: self.vae = CausalVideoVAE.from_pretrained(os.path.join(model_path, 'causal_video_vae'), torch_dtype=torch_dtype, interpolate=False) # Freeze vae for parameter in self.vae.parameters(): parameter.requires_grad = False else: self.vae = None self.load_vae = load_vae # For the image latent if model_name == "pyramid_flux": self.vae_shift_factor = -0.04 self.vae_scale_factor = 1 / 1.8726 elif model_name == "pyramid_mmdit": self.vae_shift_factor = 0.1490 self.vae_scale_factor = 1 / 1.8415 else: raise NotImplementedError(f"Unsupported model name : {model_name}") # For the video latent self.vae_video_shift_factor = -0.2343 self.vae_video_scale_factor = 1 / 3.0986 self.downsample = 8 # Configure the video training hyper-parameters # The video sequence: one frame + N * unit self.frame_per_unit = frame_per_unit self.max_temporal_length = max_temporal_length assert (max_temporal_length - 1) % frame_per_unit == 0, "The frame number should be divided by the frame number per unit" self.num_units_per_video = 1 + ((max_temporal_length - 1) // frame_per_unit) + int(sum(sample_ratios)) self.scheduler = PyramidFlowMatchEulerDiscreteScheduler( shift=timestep_shift, stages=len(self.stages), stage_range=stage_range, gamma=scheduler_gamma, ) print(f"The start sigmas and end sigmas of each stage is Start: {self.scheduler.start_sigmas}, End: {self.scheduler.end_sigmas}, Ori_start: {self.scheduler.ori_start_sigmas}") self.cfg_rate = 0.1 self.return_log = return_log self.use_flash_attn = use_flash_attn self.model_name = model_name self.sequential_offload_enabled = False self.accumulate_steps = 0 self.video_sync_group = video_sync_group def _enable_sequential_cpu_offload(self, model): self.sequential_offload_enabled = True torch_device = torch.device("cuda") device_type = torch_device.type device = torch.device(f"{device_type}:0") offload_buffers = len(model._parameters) > 0 cpu_offload(model, device, offload_buffers=offload_buffers) def enable_sequential_cpu_offload(self): self._enable_sequential_cpu_offload(self.text_encoder) self._enable_sequential_cpu_offload(self.dit) def load_checkpoint(self, checkpoint_path, model_key='model', **kwargs): checkpoint = torch.load(checkpoint_path, map_location='cpu') dit_checkpoint = OrderedDict() for key in checkpoint: if key.startswith('vae') or key.startswith('text_encoder'): continue if key.startswith('dit'): new_key = key.split('.') new_key = '.'.join(new_key[1:]) dit_checkpoint[new_key] = checkpoint[key] else: dit_checkpoint[key] = checkpoint[key] load_result = self.dit.load_state_dict(dit_checkpoint, strict=True) print(f"Load checkpoint from {checkpoint_path}, load result: {load_result}") def load_vae_checkpoint(self, vae_checkpoint_path, model_key='model'): checkpoint = torch.load(vae_checkpoint_path, map_location='cpu') checkpoint = checkpoint[model_key] loaded_checkpoint = OrderedDict() for key in checkpoint.keys(): if key.startswith('vae.'): new_key = key.split('.') new_key = '.'.join(new_key[1:]) loaded_checkpoint[new_key] = checkpoint[key] load_result = self.vae.load_state_dict(loaded_checkpoint) print(f"Load the VAE from {vae_checkpoint_path}, load result: {load_result}") @torch.no_grad() def add_pyramid_noise( self, latents_list, sample_ratios=[1, 1, 1], ): """ add the noise for each pyramidal stage noting that, this method is a general strategy for pyramid-flow, it can be used for both image and video training. You can also use this method to train pyramid-flow with full-sequence diffusion in video generation (without using temporal pyramid and autoregressive modeling) Params: latent_list: [low_res, mid_res, high_res] The vae latents of all stages sample_ratios: The proportion of each stage in the training batch """ noise = torch.randn_like(latents_list[-1]) device = noise.device dtype = latents_list[-1].dtype t = noise.shape[2] stages = len(self.stages) tot_samples = noise.shape[0] assert tot_samples % (int(sum(sample_ratios))) == 0 assert stages == len(sample_ratios) height, width = noise.shape[-2], noise.shape[-1] noise_list = [noise] cur_noise = noise for i_s in range(stages-1): height //= 2;width //= 2 cur_noise = rearrange(cur_noise, 'b c t h w -> (b t) c h w') cur_noise = F.interpolate(cur_noise, size=(height, width), mode='bilinear') * 2 cur_noise = rearrange(cur_noise, '(b t) c h w -> b c t h w', t=t) noise_list.append(cur_noise) noise_list = list(reversed(noise_list)) # make sure from low res to high res # To calculate the padding batchsize and column size batch_size = tot_samples // int(sum(sample_ratios)) column_size = int(sum(sample_ratios)) column_to_stage = {} i_sum = 0 for i_s, column_num in enumerate(sample_ratios): for index in range(i_sum, i_sum + column_num): column_to_stage[index] = i_s i_sum += column_num noisy_latents_list = [] ratios_list = [] targets_list = [] timesteps_list = [] training_steps = self.scheduler.config.num_train_timesteps # from low resolution to high resolution for index in range(column_size): i_s = column_to_stage[index] clean_latent = latents_list[i_s][index::column_size] # [bs, c, t, h, w] last_clean_latent = None if i_s == 0 else latents_list[i_s-1][index::column_size] start_sigma = self.scheduler.start_sigmas[i_s] end_sigma = self.scheduler.end_sigmas[i_s] if i_s == 0: start_point = noise_list[i_s][index::column_size] else: # Get the upsampled latent last_clean_latent = rearrange(last_clean_latent, 'b c t h w -> (b t) c h w') last_clean_latent = F.interpolate(last_clean_latent, size=(last_clean_latent.shape[-2] * 2, last_clean_latent.shape[-1] * 2), mode='nearest') last_clean_latent = rearrange(last_clean_latent, '(b t) c h w -> b c t h w', t=t) start_point = start_sigma * noise_list[i_s][index::column_size] + (1 - start_sigma) * last_clean_latent if i_s == stages - 1: end_point = clean_latent else: end_point = end_sigma * noise_list[i_s][index::column_size] + (1 - end_sigma) * clean_latent # To sample a timestep u = compute_density_for_timestep_sampling( weighting_scheme='random', batch_size=batch_size, logit_mean=0.0, logit_std=1.0, mode_scale=1.29, ) indices = (u * training_steps).long() # Totally 1000 training steps per stage indices = indices.clamp(0, training_steps-1) timesteps = self.scheduler.timesteps_per_stage[i_s][indices].to(device=device) ratios = self.scheduler.sigmas_per_stage[i_s][indices].to(device=device) while len(ratios.shape) < start_point.ndim: ratios = ratios.unsqueeze(-1) # interpolate the latent noisy_latents = ratios * start_point + (1 - ratios) * end_point last_cond_noisy_sigma = torch.rand(size=(batch_size,), device=device) * self.corrupt_ratio # [stage1_latent, stage2_latent, ..., stagen_latent], which will be concat after patching noisy_latents_list.append([noisy_latents.to(dtype)]) ratios_list.append(ratios.to(dtype)) timesteps_list.append(timesteps.to(dtype)) targets_list.append(start_point - end_point) # The standard rectified flow matching objective return noisy_latents_list, ratios_list, timesteps_list, targets_list def sample_stage_length(self, num_stages, max_units=None): max_units_in_training = 1 + ((self.max_temporal_length - 1) // self.frame_per_unit) cur_rank = get_rank() self.accumulate_steps = self.accumulate_steps + 1 total_turns = max_units_in_training // self.video_sync_group update_turn = self.accumulate_steps % total_turns # # uniformly sampling each position cur_highres_unit = max(int((cur_rank % self.video_sync_group + 1) + update_turn * self.video_sync_group), 1) cur_mid_res_unit = max(1 + max_units_in_training - cur_highres_unit, 1) cur_low_res_unit = cur_mid_res_unit if max_units is not None: cur_highres_unit = min(cur_highres_unit, max_units) cur_mid_res_unit = min(cur_mid_res_unit, max_units) cur_low_res_unit = min(cur_low_res_unit, max_units) length_list = [cur_low_res_unit, cur_mid_res_unit, cur_highres_unit] assert len(length_list) == num_stages return length_list @torch.no_grad() def add_pyramid_noise_with_temporal_pyramid( self, latents_list, sample_ratios=[1, 1, 1], ): """ add the noise for each pyramidal stage, used for AR video training with temporal pyramid Params: latent_list: [low_res, mid_res, high_res] The vae latents of all stages sample_ratios: The proportion of each stage in the training batch """ stages = len(self.stages) tot_samples = latents_list[0].shape[0] device = latents_list[0].device dtype = latents_list[0].dtype assert tot_samples % (int(sum(sample_ratios))) == 0 assert stages == len(sample_ratios) noise = torch.randn_like(latents_list[-1]) t = noise.shape[2] # To allocate the temporal length of each stage, ensuring the sum == constant max_units = 1 + (t - 1) // self.frame_per_unit if is_sequence_parallel_initialized(): max_units_per_sample = torch.LongTensor([max_units]).to(device) sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() max_units_per_sample = all_to_all(max_units_per_sample.unsqueeze(1).repeat(1, sp_group_size), sp_group, sp_group_size, scatter_dim=1, gather_dim=0).squeeze(1) max_units = min(max_units_per_sample.cpu().tolist()) num_units_per_stage = self.sample_stage_length(stages, max_units=max_units) # [The unit number of each stage] # we needs to sync the length alloc of each sequence parallel group if is_sequence_parallel_initialized(): num_units_per_stage = torch.LongTensor(num_units_per_stage).to(device) sp_group_rank = get_sequence_parallel_group_rank() global_src_rank = sp_group_rank * get_sequence_parallel_world_size() torch.distributed.broadcast(num_units_per_stage, global_src_rank, group=get_sequence_parallel_group()) num_units_per_stage = num_units_per_stage.tolist() height, width = noise.shape[-2], noise.shape[-1] noise_list = [noise] cur_noise = noise for i_s in range(stages-1): height //= 2;width //= 2 cur_noise = rearrange(cur_noise, 'b c t h w -> (b t) c h w') cur_noise = F.interpolate(cur_noise, size=(height, width), mode='bilinear') * 2 cur_noise = rearrange(cur_noise, '(b t) c h w -> b c t h w', t=t) noise_list.append(cur_noise) noise_list = list(reversed(noise_list)) # make sure from low res to high res # To calculate the batchsize and column size batch_size = tot_samples // int(sum(sample_ratios)) column_size = int(sum(sample_ratios)) column_to_stage = {} i_sum = 0 for i_s, column_num in enumerate(sample_ratios): for index in range(i_sum, i_sum + column_num): column_to_stage[index] = i_s i_sum += column_num noisy_latents_list = [] ratios_list = [] targets_list = [] timesteps_list = [] training_steps = self.scheduler.config.num_train_timesteps # from low resolution to high resolution for index in range(column_size): # First prepare the trainable latent construction i_s = column_to_stage[index] clean_latent = latents_list[i_s][index::column_size] # [bs, c, t, h, w] last_clean_latent = None if i_s == 0 else latents_list[i_s-1][index::column_size] start_sigma = self.scheduler.start_sigmas[i_s] end_sigma = self.scheduler.end_sigmas[i_s] if i_s == 0: start_point = noise_list[i_s][index::column_size] else: # Get the upsampled latent last_clean_latent = rearrange(last_clean_latent, 'b c t h w -> (b t) c h w') last_clean_latent = F.interpolate(last_clean_latent, size=(last_clean_latent.shape[-2] * 2, last_clean_latent.shape[-1] * 2), mode='nearest') last_clean_latent = rearrange(last_clean_latent, '(b t) c h w -> b c t h w', t=t) start_point = start_sigma * noise_list[i_s][index::column_size] + (1 - start_sigma) * last_clean_latent if i_s == stages - 1: end_point = clean_latent else: end_point = end_sigma * noise_list[i_s][index::column_size] + (1 - end_sigma) * clean_latent # To sample a timestep u = compute_density_for_timestep_sampling( weighting_scheme='random', batch_size=batch_size, logit_mean=0.0, logit_std=1.0, mode_scale=1.29, ) indices = (u * training_steps).long() # Totally 1000 training steps per stage indices = indices.clamp(0, training_steps-1) timesteps = self.scheduler.timesteps_per_stage[i_s][indices].to(device=device) ratios = self.scheduler.sigmas_per_stage[i_s][indices].to(device=device) noise_ratios = ratios * start_sigma + (1 - ratios) * end_sigma while len(ratios.shape) < start_point.ndim: ratios = ratios.unsqueeze(-1) # interpolate the latent noisy_latents = ratios * start_point + (1 - ratios) * end_point # The flow matching object target_latents = start_point - end_point # pad the noisy previous num_units = num_units_per_stage[i_s] num_units = min(num_units, 1 + (t - 1) // self.frame_per_unit) actual_frames = 1 + (num_units - 1) * self.frame_per_unit noisy_latents = noisy_latents[:, :, :actual_frames] target_latents = target_latents[:, :, :actual_frames] clean_latent = clean_latent[:, :, :actual_frames] stage_noise = noise_list[i_s][index::column_size][:, :, :actual_frames] # only the last latent takes part in training noisy_latents = noisy_latents[:, :, -self.frame_per_unit:] target_latents = target_latents[:, :, -self.frame_per_unit:] last_cond_noisy_sigma = torch.rand(size=(batch_size,), device=device) * self.corrupt_ratio if num_units == 1: stage_input = [noisy_latents.to(dtype)] else: # add the random noise for the last cond clip last_cond_latent = clean_latent[:, :, -(2*self.frame_per_unit):-self.frame_per_unit] while len(last_cond_noisy_sigma.shape) < last_cond_latent.ndim: last_cond_noisy_sigma = last_cond_noisy_sigma.unsqueeze(-1) # We adding some noise to corrupt the clean condition last_cond_latent = last_cond_noisy_sigma * torch.randn_like(last_cond_latent) + (1 - last_cond_noisy_sigma) * last_cond_latent # concat the corrupted condition and the input noisy latents stage_input = [noisy_latents.to(dtype), last_cond_latent.to(dtype)] cur_unit_num = 2 cur_stage = i_s while cur_unit_num < num_units: cur_stage = max(cur_stage - 1, 0) if cur_stage == 0: break cur_unit_num += 1 cond_latents = latents_list[cur_stage][index::column_size][:, :, :actual_frames] cond_latents = cond_latents[:, :, -(cur_unit_num * self.frame_per_unit) : -((cur_unit_num - 1) * self.frame_per_unit)] cond_latents = last_cond_noisy_sigma * torch.randn_like(cond_latents) + (1 - last_cond_noisy_sigma) * cond_latents stage_input.append(cond_latents.to(dtype)) if cur_stage == 0 and cur_unit_num < num_units: cond_latents = latents_list[0][index::column_size][:, :, :actual_frames] cond_latents = cond_latents[:, :, :-(cur_unit_num * self.frame_per_unit)] cond_latents = last_cond_noisy_sigma * torch.randn_like(cond_latents) + (1 - last_cond_noisy_sigma) * cond_latents stage_input.append(cond_latents.to(dtype)) stage_input = list(reversed(stage_input)) noisy_latents_list.append(stage_input) ratios_list.append(ratios.to(dtype)) timesteps_list.append(timesteps.to(dtype)) targets_list.append(target_latents) # The standard rectified flow matching objective return noisy_latents_list, ratios_list, timesteps_list, targets_list @torch.no_grad() def get_pyramid_latent(self, x, stage_num): # x is the origin vae latent vae_latent_list = [] vae_latent_list.append(x) temp, height, width = x.shape[-3], x.shape[-2], x.shape[-1] for _ in range(stage_num): height //= 2 width //= 2 x = rearrange(x, 'b c t h w -> (b t) c h w') x = torch.nn.functional.interpolate(x, size=(height, width), mode='bilinear') x = rearrange(x, '(b t) c h w -> b c t h w', t=temp) vae_latent_list.append(x) vae_latent_list = list(reversed(vae_latent_list)) return vae_latent_list @torch.no_grad() def get_vae_latent(self, video, use_temporal_pyramid=True): if self.load_vae: assert video.shape[1] == 3, "The vae is loaded, the input should be raw pixels" video = self.vae.encode(video).latent_dist.sample() # [b c t h w] if video.shape[2] == 1: # is image video = (video - self.vae_shift_factor) * self.vae_scale_factor else: # is video video[:, :, :1] = (video[:, :, :1] - self.vae_shift_factor) * self.vae_scale_factor video[:, :, 1:] = (video[:, :, 1:] - self.vae_video_shift_factor) * self.vae_video_scale_factor # Get the pyramidal stages vae_latent_list = self.get_pyramid_latent(video, len(self.stages) - 1) if use_temporal_pyramid: noisy_latents_list, ratios_list, timesteps_list, targets_list = self.add_pyramid_noise_with_temporal_pyramid(vae_latent_list, self.sample_ratios) else: # Only use the spatial pyramidal (without temporal ar) noisy_latents_list, ratios_list, timesteps_list, targets_list = self.add_pyramid_noise(vae_latent_list, self.sample_ratios) return noisy_latents_list, ratios_list, timesteps_list, targets_list @torch.no_grad() def get_text_embeddings(self, text, rand_idx, device): if self.load_text_encoder: batch_size = len(text) # Text is a str list for idx in range(batch_size): if rand_idx[idx].item(): text[idx] = '' return self.text_encoder(text, device) # [b s c] else: batch_size = len(text['prompt_embeds']) for idx in range(batch_size): if rand_idx[idx].item(): text['prompt_embeds'][idx] = self.null_text_embeds['prompt_embed'].to(device) text['prompt_attention_mask'][idx] = self.null_text_embeds['prompt_attention_mask'].to(device) text['pooled_prompt_embeds'][idx] = self.null_text_embeds['pooled_prompt_embed'].to(device) return text['prompt_embeds'], text['prompt_attention_mask'], text['pooled_prompt_embeds'] def calculate_loss(self, model_preds_list, targets_list): loss_list = [] for model_pred, target in zip(model_preds_list, targets_list): # Compute the loss. loss_weight = torch.ones_like(target) loss = torch.mean( (loss_weight.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), 1, ) loss_list.append(loss) diffusion_loss = torch.cat(loss_list, dim=0).mean() if self.return_log: log = {} split="train" log[f'{split}/loss'] = diffusion_loss.detach() return diffusion_loss, log else: return diffusion_loss, {} def __call__(self, video, text, identifier=['video'], use_temporal_pyramid=True, accelerator: Accelerator=None): xdim = video.ndim device = video.device if 'video' in identifier: assert 'image' not in identifier is_image = False else: assert 'video' not in identifier video = video.unsqueeze(2) # 'b c h w -> b c 1 h w' is_image = True # TODO: now have 3 stages, firstly get the vae latents with torch.no_grad(), accelerator.autocast(): # 10% prob drop the text batch_size = len(video) rand_idx = torch.rand((batch_size,)) <= self.cfg_rate prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.get_text_embeddings(text, rand_idx, device) noisy_latents_list, ratios_list, timesteps_list, targets_list = self.get_vae_latent(video, use_temporal_pyramid=use_temporal_pyramid) timesteps = torch.cat([timestep.unsqueeze(-1) for timestep in timesteps_list], dim=-1) timesteps = timesteps.reshape(-1) assert timesteps.shape[0] == prompt_embeds.shape[0] # DiT forward model_preds_list = self.dit( sample=noisy_latents_list, timestep_ratio=timesteps, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, pooled_projections=pooled_prompt_embeds, ) # calculate the loss return self.calculate_loss(model_preds_list, targets_list) def prepare_latents( self, batch_size, num_channels_latents, temp, height, width, dtype, device, generator, ): shape = ( batch_size, num_channels_latents, int(temp), int(height) // self.downsample, int(width) // self.downsample, ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) return latents def sample_block_noise(self, bs, ch, temp, height, width): gamma = self.scheduler.config.gamma dist = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(4), torch.eye(4) * (1 + gamma) - torch.ones(4, 4) * gamma) block_number = bs * ch * temp * (height // 2) * (width // 2) noise = torch.stack([dist.sample() for _ in range(block_number)]) # [block number, 4] noise = rearrange(noise, '(b c t h w) (p q) -> b c t (h p) (w q)',b=bs,c=ch,t=temp,h=height//2,w=width//2,p=2,q=2) return noise @torch.no_grad() def generate_one_unit( self, latents, past_conditions, # List of past conditions, contains the conditions of each stage prompt_embeds, prompt_attention_mask, pooled_prompt_embeds, num_inference_steps, height, width, temp, device, dtype, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, is_first_frame: bool = False, ): stages = self.stages intermed_latents = [] for i_s in range(len(stages)): self.scheduler.set_timesteps(num_inference_steps[i_s], i_s, device=device) timesteps = self.scheduler.timesteps if i_s > 0: height *= 2; width *= 2 latents = rearrange(latents, 'b c t h w -> (b t) c h w') latents = F.interpolate(latents, size=(height, width), mode='nearest') latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp) # Fix the stage ori_sigma = 1 - self.scheduler.ori_start_sigmas[i_s] # the original coeff of signal gamma = self.scheduler.config.gamma alpha = 1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma) beta = alpha * (1 - ori_sigma) / math.sqrt(gamma) bs, ch, temp, height, width = latents.shape noise = self.sample_block_noise(bs, ch, temp, height, width) noise = noise.to(device=device, dtype=dtype) latents = alpha * latents + beta * noise # To fix the block artifact for idx, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype) if is_sequence_parallel_initialized(): # sync the input latent sp_group_rank = get_sequence_parallel_group_rank() global_src_rank = sp_group_rank * get_sequence_parallel_world_size() torch.distributed.broadcast(latent_model_input, global_src_rank, group=get_sequence_parallel_group()) latent_model_input = past_conditions[i_s] + [latent_model_input] noise_pred = self.dit( sample=[latent_model_input], timestep_ratio=timestep, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, pooled_projections=pooled_prompt_embeds, ) noise_pred = noise_pred[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) if is_first_frame: noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) else: noise_pred = noise_pred_uncond + self.video_guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( model_output=noise_pred, timestep=timestep, sample=latents, generator=generator, ).prev_sample intermed_latents.append(latents) return intermed_latents @torch.no_grad() def generate_i2v( self, prompt: Union[str, List[str]] = '', input_image: PIL.Image = None, temp: int = 1, num_inference_steps: Optional[Union[int, List[int]]] = 28, guidance_scale: float = 7.0, video_guidance_scale: float = 4.0, min_guidance_scale: float = 2.0, use_linear_guidance: bool = False, alpha: float = 0.5, negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror", num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "pil", save_memory: bool = True, cpu_offloading: bool = False, # If true, reload device will be cuda. inference_multigpu: bool = False, callback: Optional[Callable[[int, int, Dict], None]] = None, ): if self.sequential_offload_enabled and not cpu_offloading: print("Warning: overriding cpu_offloading set to false, as it's needed for sequential cpu offload") cpu_offloading=True device = self.device if not cpu_offloading else torch.device("cuda") dtype = self.dtype if cpu_offloading: # skip caring about the text encoder here as its about to be used anyways. if not self.sequential_offload_enabled: if str(self.dit.device) != "cpu": print("(dit) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.") self.dit.to("cpu") torch.cuda.empty_cache() if str(self.vae.device) != "cpu": print("(vae) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.") self.vae.to("cpu") torch.cuda.empty_cache() width = input_image.width height = input_image.height assert temp % self.frame_per_unit == 0, "The frames should be divided by frame_per unit" if isinstance(prompt, str): batch_size = 1 prompt = prompt + ", hyper quality, Ultra HD, 8K" # adding this prompt to improve aesthetics else: assert isinstance(prompt, list) batch_size = len(prompt) prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt] if isinstance(num_inference_steps, int): num_inference_steps = [num_inference_steps] * len(self.stages) negative_prompt = negative_prompt or "" # Get the text embeddings if cpu_offloading and not self.sequential_offload_enabled: self.text_encoder.to("cuda") prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device) negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device) if cpu_offloading: if not self.sequential_offload_enabled: self.text_encoder.to("cpu") self.vae.to("cuda") torch.cuda.empty_cache() if use_linear_guidance: max_guidance_scale = guidance_scale guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp+1)] print(guidance_scale_list) self._guidance_scale = guidance_scale self._video_guidance_scale = video_guidance_scale if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) if is_sequence_parallel_initialized(): # sync the prompt embedding across multiple GPUs sp_group_rank = get_sequence_parallel_group_rank() global_src_rank = sp_group_rank * get_sequence_parallel_world_size() torch.distributed.broadcast(prompt_embeds, global_src_rank, group=get_sequence_parallel_group()) torch.distributed.broadcast(pooled_prompt_embeds, global_src_rank, group=get_sequence_parallel_group()) torch.distributed.broadcast(prompt_attention_mask, global_src_rank, group=get_sequence_parallel_group()) # Create the initial random noise num_channels_latents = (self.dit.config.in_channels // 4) if self.model_name == "pyramid_flux" else self.dit.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, temp, height, width, prompt_embeds.dtype, device, generator, ) temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1] latents = rearrange(latents, 'b c t h w -> (b t) c h w') # by defalut, we needs to start from the block noise for _ in range(len(self.stages)-1): height //= 2;width //= 2 latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2 latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp) num_units = temp // self.frame_per_unit stages = self.stages # encode the image latents image_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), ]) input_image_tensor = image_transform(input_image).unsqueeze(0).unsqueeze(2) # [b c 1 h w] input_image_latent = (self.vae.encode(input_image_tensor.to(self.vae.device, dtype=self.vae.dtype)).latent_dist.sample() - self.vae_shift_factor) * self.vae_scale_factor # [b c 1 h w] if is_sequence_parallel_initialized(): # sync the image latent across multiple GPUs sp_group_rank = get_sequence_parallel_group_rank() global_src_rank = sp_group_rank * get_sequence_parallel_world_size() torch.distributed.broadcast(input_image_latent, global_src_rank, group=get_sequence_parallel_group()) generated_latents_list = [input_image_latent] # The generated results last_generated_latents = input_image_latent if cpu_offloading: self.vae.to("cpu") if not self.sequential_offload_enabled: self.dit.to("cuda") torch.cuda.empty_cache() for unit_index in tqdm(range(1, num_units)): gc.collect() torch.cuda.empty_cache() if callback: callback(unit_index, num_units) if use_linear_guidance: self._guidance_scale = guidance_scale_list[unit_index] self._video_guidance_scale = guidance_scale_list[unit_index] # prepare the condition latents past_condition_latents = [] clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1) for i_s in range(len(stages)): last_cond_latent = clean_latents_list[i_s][:,:,-self.frame_per_unit:] stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent] # pad the past clean latents cur_unit_num = unit_index cur_stage = i_s cur_unit_ptx = 1 while cur_unit_ptx < cur_unit_num: cur_stage = max(cur_stage - 1, 0) if cur_stage == 0: break cur_unit_ptx += 1 cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)] stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents) if cur_stage == 0 and cur_unit_ptx < cur_unit_num: cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)] stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents) stage_input = list(reversed(stage_input)) past_condition_latents.append(stage_input) intermed_latents = self.generate_one_unit( latents[:,:,(unit_index - 1) * self.frame_per_unit:unit_index * self.frame_per_unit], past_condition_latents, prompt_embeds, prompt_attention_mask, pooled_prompt_embeds, num_inference_steps, height, width, self.frame_per_unit, device, dtype, generator, is_first_frame=False, ) generated_latents_list.append(intermed_latents[-1]) last_generated_latents = intermed_latents generated_latents = torch.cat(generated_latents_list, dim=2) if output_type == "latent": image = generated_latents else: if cpu_offloading: if not self.sequential_offload_enabled: self.dit.to("cpu") self.vae.to("cuda") torch.cuda.empty_cache() image = self.decode_latent(generated_latents, save_memory=save_memory, inference_multigpu=inference_multigpu) if cpu_offloading: self.vae.to("cpu") torch.cuda.empty_cache() # not technically necessary, but returns the pipeline to its original state return image @torch.no_grad() def generate( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, temp: int = 1, num_inference_steps: Optional[Union[int, List[int]]] = 28, video_num_inference_steps: Optional[Union[int, List[int]]] = 28, guidance_scale: float = 7.0, video_guidance_scale: float = 7.0, min_guidance_scale: float = 2.0, use_linear_guidance: bool = False, alpha: float = 0.5, negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror", num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "pil", save_memory: bool = True, cpu_offloading: bool = False, # If true, reload device will be cuda. inference_multigpu: bool = False, callback: Optional[Callable[[int, int, Dict], None]] = None, ): if self.sequential_offload_enabled and not cpu_offloading: print("Warning: overriding cpu_offloading set to false, as it's needed for sequential cpu offload") cpu_offloading=True device = self.device if not cpu_offloading else torch.device("cuda") dtype = self.dtype if cpu_offloading: # skip caring about the text encoder here as its about to be used anyways. if not self.sequential_offload_enabled: if str(self.dit.device) != "cpu": print("(dit) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.") self.dit.to("cpu") torch.cuda.empty_cache() if str(self.vae.device) != "cpu": print("(vae) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.") self.vae.to("cpu") torch.cuda.empty_cache() assert (temp - 1) % self.frame_per_unit == 0, "The frames should be divided by frame_per unit" if isinstance(prompt, str): batch_size = 1 prompt = prompt + ", hyper quality, Ultra HD, 8K" # adding this prompt to improve aesthetics else: assert isinstance(prompt, list) batch_size = len(prompt) prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt] if isinstance(num_inference_steps, int): num_inference_steps = [num_inference_steps] * len(self.stages) if isinstance(video_num_inference_steps, int): video_num_inference_steps = [video_num_inference_steps] * len(self.stages) negative_prompt = negative_prompt or "" # Get the text embeddings if cpu_offloading and not self.sequential_offload_enabled: self.text_encoder.to("cuda") prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device) negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device) if cpu_offloading: if not self.sequential_offload_enabled: self.text_encoder.to("cpu") self.dit.to("cuda") torch.cuda.empty_cache() if use_linear_guidance: max_guidance_scale = guidance_scale # guidance_scale_list = torch.linspace(max_guidance_scale, min_guidance_scale, temp).tolist() guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp)] print(guidance_scale_list) self._guidance_scale = guidance_scale self._video_guidance_scale = video_guidance_scale if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) if is_sequence_parallel_initialized(): # sync the prompt embedding across multiple GPUs sp_group_rank = get_sequence_parallel_group_rank() global_src_rank = sp_group_rank * get_sequence_parallel_world_size() torch.distributed.broadcast(prompt_embeds, global_src_rank, group=get_sequence_parallel_group()) torch.distributed.broadcast(pooled_prompt_embeds, global_src_rank, group=get_sequence_parallel_group()) torch.distributed.broadcast(prompt_attention_mask, global_src_rank, group=get_sequence_parallel_group()) # Create the initial random noise num_channels_latents = (self.dit.config.in_channels // 4) if self.model_name == "pyramid_flux" else self.dit.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, temp, height, width, prompt_embeds.dtype, device, generator, ) temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1] latents = rearrange(latents, 'b c t h w -> (b t) c h w') # by default, we needs to start from the block noise for _ in range(len(self.stages)-1): height //= 2;width //= 2 latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2 latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp) num_units = 1 + (temp - 1) // self.frame_per_unit stages = self.stages generated_latents_list = [] # The generated results last_generated_latents = None for unit_index in tqdm(range(num_units)): gc.collect() torch.cuda.empty_cache() if callback: callback(unit_index, num_units) if use_linear_guidance: self._guidance_scale = guidance_scale_list[unit_index] self._video_guidance_scale = guidance_scale_list[unit_index] if unit_index == 0: past_condition_latents = [[] for _ in range(len(stages))] intermed_latents = self.generate_one_unit( latents[:,:,:1], past_condition_latents, prompt_embeds, prompt_attention_mask, pooled_prompt_embeds, num_inference_steps, height, width, 1, device, dtype, generator, is_first_frame=True, ) else: # prepare the condition latents past_condition_latents = [] clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1) for i_s in range(len(stages)): last_cond_latent = clean_latents_list[i_s][:,:,-(self.frame_per_unit):] stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent] # pad the past clean latents cur_unit_num = unit_index cur_stage = i_s cur_unit_ptx = 1 while cur_unit_ptx < cur_unit_num: cur_stage = max(cur_stage - 1, 0) if cur_stage == 0: break cur_unit_ptx += 1 cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)] stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents) if cur_stage == 0 and cur_unit_ptx < cur_unit_num: cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)] stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents) stage_input = list(reversed(stage_input)) past_condition_latents.append(stage_input) intermed_latents = self.generate_one_unit( latents[:,:, 1 + (unit_index - 1) * self.frame_per_unit:1 + unit_index * self.frame_per_unit], past_condition_latents, prompt_embeds, prompt_attention_mask, pooled_prompt_embeds, video_num_inference_steps, height, width, self.frame_per_unit, device, dtype, generator, is_first_frame=False, ) generated_latents_list.append(intermed_latents[-1]) last_generated_latents = intermed_latents generated_latents = torch.cat(generated_latents_list, dim=2) if output_type == "latent": image = generated_latents else: if cpu_offloading: if not self.sequential_offload_enabled: self.dit.to("cpu") self.vae.to("cuda") torch.cuda.empty_cache() image = self.decode_latent(generated_latents, save_memory=save_memory, inference_multigpu=inference_multigpu) if cpu_offloading: self.vae.to("cpu") torch.cuda.empty_cache() # not technically necessary, but returns the pipeline to its original state return image def decode_latent(self, latents, save_memory=True, inference_multigpu=False): # only the main process needs vae decoding if inference_multigpu and get_rank() != 0: return None if latents.shape[2] == 1: latents = (latents / self.vae_scale_factor) + self.vae_shift_factor else: latents[:, :, :1] = (latents[:, :, :1] / self.vae_scale_factor) + self.vae_shift_factor latents[:, :, 1:] = (latents[:, :, 1:] / self.vae_video_scale_factor) + self.vae_video_shift_factor if save_memory: # reducing the tile size and temporal chunk window size image = self.vae.decode(latents, temporal_chunk=True, window_size=1, tile_sample_min_size=256).sample else: image = self.vae.decode(latents, temporal_chunk=True, window_size=2, tile_sample_min_size=512).sample image = image.mul(127.5).add(127.5).clamp(0, 255).byte() image = rearrange(image, "B C T H W -> (B T) H W C") image = image.cpu().numpy() image = self.numpy_to_pil(image) return image @staticmethod def numpy_to_pil(images): """ Convert a numpy image or a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] if images.shape[-1] == 1: # special case for grayscale (single channel) images pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] else: pil_images = [Image.fromarray(image) for image in images] return pil_images @property def device(self): return next(self.dit.parameters()).device @property def dtype(self): return next(self.dit.parameters()).dtype @property def guidance_scale(self): return self._guidance_scale @property def video_guidance_scale(self): return self._video_guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 0