import torch from manopth.manolayer import ManoLayer from manopth import demo batch_size = 10 # Select number of principal components for pose space ncomps = 6 # Initialize MANO layer mano_layer = ManoLayer( mano_root='mano/models', use_pca=True, ncomps=ncomps, flat_hand_mean=False) # Generate random shape parameters random_shape = torch.rand(batch_size, 10) # Generate random pose parameters, including 3 values for global axis-angle rotation random_pose = torch.rand(batch_size, ncomps + 3) # Forward pass through MANO layer hand_verts, hand_joints = mano_layer(random_pose, random_shape) demo.display_hand({ 'verts': hand_verts, 'joints': hand_joints }, mano_faces=mano_layer.th_faces)