import math import torch def quaternion_to_matrix(quaternions): """ From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). """ r, i, j, k = torch.unbind(quaternions, -1) two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def axis_angle_to_quaternion(axis_angle): """ From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html Convert rotations given as axis/angle to quaternions. Args: axis_angle: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. Returns: quaternions with real part first, as tensor of shape (..., 4). """ angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) half_angles = 0.5 * angles eps = 1e-6 small_angles = angles.abs() < eps sin_half_angles_over_angles = torch.empty_like(angles) sin_half_angles_over_angles[~small_angles] = ( torch.sin(half_angles[~small_angles]) / angles[~small_angles] ) # for x small, sin(x/2) is about x/2 - (x/2)^3/6 # so sin(x/2)/x is about 1/2 - (x*x)/48 sin_half_angles_over_angles[small_angles] = ( 0.5 - (angles[small_angles] * angles[small_angles]) / 48 ) quaternions = torch.cat( [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 ) return quaternions def axis_angle_to_matrix(axis_angle): """ From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html Convert rotations given as axis/angle to rotation matrices. Args: axis_angle: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. Returns: Rotation matrices as tensor of shape (..., 3, 3). """ return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) def rigid_transform_Kabsch_3D_torch(A, B): # R = 3x3 rotation matrix, t = 3x1 column vector # This already takes residue identity into account. assert A.shape[1] == B.shape[1] num_rows, num_cols = A.shape if num_rows != 3: raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}") num_rows, num_cols = B.shape if num_rows != 3: raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}") # find mean column wise: 3 x 1 centroid_A = torch.mean(A, axis=1, keepdims=True) centroid_B = torch.mean(B, axis=1, keepdims=True) # subtract mean Am = A - centroid_A Bm = B - centroid_B H = Am @ Bm.T # find rotation U, S, Vt = torch.linalg.svd(H) R = Vt.T @ U.T # special reflection case if torch.linalg.det(R) < 0: # print("det(R) < R, reflection detected!, correcting for it ...") SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device)) R = (Vt.T @ SS) @ U.T assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 # note I had to change this error bound to be higher t = -R @ centroid_A + centroid_B return R, t