import numpy as np import torch from torch_geometric.loader import DataLoader from utils.diffusion_utils import modify_conformer, set_time from utils.torsion import modify_conformer_torsion_angles from scipy.spatial.transform import Rotation as R def randomize_position(data_list, no_torsion, no_random, tr_sigma_max): # in place modification of the list if not no_torsion: # randomize torsion angles for complex_graph in data_list: torsion_updates = np.random.uniform(low=-np.pi, high=np.pi, size=complex_graph['ligand'].edge_mask.sum()) complex_graph['ligand'].pos = \ modify_conformer_torsion_angles(complex_graph['ligand'].pos, complex_graph['ligand', 'ligand'].edge_index.T[ complex_graph['ligand'].edge_mask], complex_graph['ligand'].mask_rotate[0], torsion_updates) for complex_graph in data_list: # randomize position molecule_center = torch.mean(complex_graph['ligand'].pos, dim=0, keepdim=True) random_rotation = torch.from_numpy(R.random().as_matrix()).float() complex_graph['ligand'].pos = (complex_graph['ligand'].pos - molecule_center) @ random_rotation.T # base_rmsd = np.sqrt(np.sum((complex_graph['ligand'].pos.cpu().numpy() - orig_complex_graph['ligand'].pos.numpy()) ** 2, axis=1).mean()) if not no_random: # note for now the torsion angles are still randomised tr_update = torch.normal(mean=0, std=tr_sigma_max, size=(1, 3)) complex_graph['ligand'].pos += tr_update def sampling(data_list, model, inference_steps, tr_schedule, rot_schedule, tor_schedule, device, t_to_sigma, model_args, no_random=False, ode=False, visualization_list=None, confidence_model=None, confidence_data_list=None, confidence_model_args=None, batch_size=32, no_final_step_noise=False): N = len(data_list) for t_idx in range(inference_steps): t_tr, t_rot, t_tor = tr_schedule[t_idx], rot_schedule[t_idx], tor_schedule[t_idx] dt_tr = tr_schedule[t_idx] - tr_schedule[t_idx + 1] if t_idx < inference_steps - 1 else tr_schedule[t_idx] dt_rot = rot_schedule[t_idx] - rot_schedule[t_idx + 1] if t_idx < inference_steps - 1 else rot_schedule[t_idx] dt_tor = tor_schedule[t_idx] - tor_schedule[t_idx + 1] if t_idx < inference_steps - 1 else tor_schedule[t_idx] loader = DataLoader(data_list, batch_size=batch_size) new_data_list = [] for complex_graph_batch in loader: b = complex_graph_batch.num_graphs complex_graph_batch = complex_graph_batch.to(device) tr_sigma, rot_sigma, tor_sigma = t_to_sigma(t_tr, t_rot, t_tor) set_time(complex_graph_batch, t_tr, t_rot, t_tor, b, model_args.all_atoms, device) with torch.no_grad(): tr_score, rot_score, tor_score = model(complex_graph_batch) tr_g = tr_sigma * torch.sqrt(torch.tensor(2 * np.log(model_args.tr_sigma_max / model_args.tr_sigma_min))) rot_g = 2 * rot_sigma * torch.sqrt(torch.tensor(np.log(model_args.rot_sigma_max / model_args.rot_sigma_min))) if ode: tr_perturb = (0.5 * tr_g ** 2 * dt_tr * tr_score.cpu()).cpu() rot_perturb = (0.5 * rot_score.cpu() * dt_rot * rot_g ** 2).cpu() else: tr_z = torch.zeros((b, 3)) if no_random or (no_final_step_noise and t_idx == inference_steps - 1) \ else torch.normal(mean=0, std=1, size=(b, 3)) tr_perturb = (tr_g ** 2 * dt_tr * tr_score.cpu() + tr_g * np.sqrt(dt_tr) * tr_z).cpu() rot_z = torch.zeros((b, 3)) if no_random or (no_final_step_noise and t_idx == inference_steps - 1) \ else torch.normal(mean=0, std=1, size=(b, 3)) rot_perturb = (rot_score.cpu() * dt_rot * rot_g ** 2 + rot_g * np.sqrt(dt_rot) * rot_z).cpu() if not model_args.no_torsion: tor_g = tor_sigma * torch.sqrt(torch.tensor(2 * np.log(model_args.tor_sigma_max / model_args.tor_sigma_min))) if ode: tor_perturb = (0.5 * tor_g ** 2 * dt_tor * tor_score.cpu()).numpy() else: tor_z = torch.zeros(tor_score.shape) if no_random or (no_final_step_noise and t_idx == inference_steps - 1) \ else torch.normal(mean=0, std=1, size=tor_score.shape) tor_perturb = (tor_g ** 2 * dt_tor * tor_score.cpu() + tor_g * np.sqrt(dt_tor) * tor_z).numpy() torsions_per_molecule = tor_perturb.shape[0] // b else: tor_perturb = None # Apply noise new_data_list.extend([modify_conformer(complex_graph, tr_perturb[i:i + 1], rot_perturb[i:i + 1].squeeze(0), tor_perturb[i * torsions_per_molecule:(i + 1) * torsions_per_molecule] if not model_args.no_torsion else None) for i, complex_graph in enumerate(complex_graph_batch.to('cpu').to_data_list())]) data_list = new_data_list if visualization_list is not None: for idx, visualization in enumerate(visualization_list): visualization.add((data_list[idx]['ligand'].pos + data_list[idx].original_center).detach().cpu(), part=1, order=t_idx + 2) with torch.no_grad(): if confidence_model is not None: loader = DataLoader(data_list, batch_size=batch_size) confidence_loader = iter(DataLoader(confidence_data_list, batch_size=batch_size)) confidence = [] for complex_graph_batch in loader: complex_graph_batch = complex_graph_batch.to(device) if confidence_data_list is not None: confidence_complex_graph_batch = next(confidence_loader).to(device) confidence_complex_graph_batch['ligand'].pos = complex_graph_batch['ligand'].pos set_time(confidence_complex_graph_batch, 0, 0, 0, N, confidence_model_args.all_atoms, device) confidence.append(confidence_model(confidence_complex_graph_batch)) else: confidence.append(confidence_model(complex_graph_batch)) confidence = torch.cat(confidence, dim=0) else: confidence = None return data_list, confidence