# fmt: off ############################################ # imports ############################################ import jax import requests import hashlib import tarfile import time import pickle import os import re import random import tqdm.notebook import numpy as np import matplotlib.pyplot as plt import matplotlib import matplotlib.patheffects from matplotlib import collections as mcoll try: import py3Dmol except: pass from string import ascii_uppercase,ascii_lowercase pymol_color_list = ["#33ff33","#00ffff","#ff33cc","#ffff00","#ff9999","#e5e5e5","#7f7fff","#ff7f00", "#7fff7f","#199999","#ff007f","#ffdd5e","#8c3f99","#b2b2b2","#007fff","#c4b200", "#8cb266","#00bfbf","#b27f7f","#fcd1a5","#ff7f7f","#ffbfdd","#7fffff","#ffff7f", "#00ff7f","#337fcc","#d8337f","#bfff3f","#ff7fff","#d8d8ff","#3fffbf","#b78c4c", "#339933","#66b2b2","#ba8c84","#84bf00","#b24c66","#7f7f7f","#3f3fa5","#a5512b"] pymol_cmap = matplotlib.colors.ListedColormap(pymol_color_list) alphabet_list = list(ascii_uppercase+ascii_lowercase) aatypes = set('ACDEFGHIKLMNPQRSTVWY') ########################################### # control gpu/cpu memory usage ########################################### def rm(x): '''remove data from device''' jax.tree_util.tree_map(lambda y: y.device_buffer.delete(), x) def to(x,device="cpu"): '''move data to device''' d = jax.devices(device)[0] return jax.tree_util.tree_map(lambda y:jax.device_put(y,d), x) def clear_mem(device="gpu"): '''remove all data from device''' backend = jax.lib.xla_bridge.get_backend(device) for buf in backend.live_buffers(): buf.delete() ########################################## # call mmseqs2 ########################################## TQDM_BAR_FORMAT = '{l_bar}{bar}| {n_fmt}/{total_fmt} [elapsed: {elapsed} remaining: {remaining}]' def run_mmseqs2(x, prefix, use_env=True, use_filter=True, use_templates=False, filter=None, host_url="https://a3m.mmseqs.com"): def submit(seqs, mode, N=101): n,query = N,"" for seq in seqs: query += f">{n}\n{seq}\n" n += 1 res = requests.post(f'{host_url}/ticket/msa', data={'q':query,'mode': mode}) try: out = res.json() except ValueError: out = {"status":"UNKNOWN"} return out def status(ID): res = requests.get(f'{host_url}/ticket/{ID}') try: out = res.json() except ValueError: out = {"status":"UNKNOWN"} return out def download(ID, path): res = requests.get(f'{host_url}/result/download/{ID}') with open(path,"wb") as out: out.write(res.content) # process input x seqs = [x] if isinstance(x, str) else x # compatibility to old option if filter is not None: use_filter = filter # setup mode if use_filter: mode = "env" if use_env else "all" else: mode = "env-nofilter" if use_env else "nofilter" # define path path = f"{prefix}_{mode}" if not os.path.isdir(path): os.mkdir(path) # call mmseqs2 api tar_gz_file = f'{path}/out.tar.gz' N,REDO = 101,True # deduplicate and keep track of order seqs_unique = sorted(list(set(seqs))) Ms = [N+seqs_unique.index(seq) for seq in seqs] # lets do it! if not os.path.isfile(tar_gz_file): TIME_ESTIMATE = 150 * len(seqs_unique) with tqdm.notebook.tqdm(total=TIME_ESTIMATE, bar_format=TQDM_BAR_FORMAT) as pbar: while REDO: pbar.set_description("SUBMIT") # Resubmit job until it goes through out = submit(seqs_unique, mode, N) while out["status"] in ["UNKNOWN","RATELIMIT"]: # resubmit time.sleep(5 + random.randint(0,5)) out = submit(seqs_unique, mode, N) if out["status"] == "ERROR": raise Exception(f'MMseqs2 API is giving errors. Please confirm your input is a valid protein sequence. If error persists, please try again an hour later.') if out["status"] == "MAINTENANCE": raise Exception(f'MMseqs2 API is undergoing maintenance. Please try again in a few minutes.') # wait for job to finish ID,TIME = out["id"],0 pbar.set_description(out["status"]) while out["status"] in ["UNKNOWN","RUNNING","PENDING"]: t = 5 + random.randint(0,5) time.sleep(t) out = status(ID) pbar.set_description(out["status"]) if out["status"] == "RUNNING": TIME += t pbar.update(n=t) #if TIME > 900 and out["status"] != "COMPLETE": # # something failed on the server side, need to resubmit # N += 1 # break if out["status"] == "COMPLETE": if TIME < TIME_ESTIMATE: pbar.update(n=(TIME_ESTIMATE-TIME)) REDO = False # Download results download(ID, tar_gz_file) # prep list of a3m files a3m_files = [f"{path}/uniref.a3m"] if use_env: a3m_files.append(f"{path}/bfd.mgnify30.metaeuk30.smag30.a3m") # extract a3m files if not os.path.isfile(a3m_files[0]): with tarfile.open(tar_gz_file) as tar_gz: tar_gz.extractall(path) # templates if use_templates: templates = {} print("seq\tpdb\tcid\tevalue") for line in open(f"{path}/pdb70.m8","r"): p = line.rstrip().split() M,pdb,qid,e_value = p[0],p[1],p[2],p[10] M = int(M) if M not in templates: templates[M] = [] templates[M].append(pdb) if len(templates[M]) <= 20: print(f"{int(M)-N}\t{pdb}\t{qid}\t{e_value}") template_paths = {} for k,TMPL in templates.items(): TMPL_PATH = f"{prefix}_{mode}/templates_{k}" if not os.path.isdir(TMPL_PATH): os.mkdir(TMPL_PATH) TMPL_LINE = ",".join(TMPL[:20]) os.system(f"curl -s https://a3m-templates.mmseqs.com/template/{TMPL_LINE} | tar xzf - -C {TMPL_PATH}/") os.system(f"cp {TMPL_PATH}/pdb70_a3m.ffindex {TMPL_PATH}/pdb70_cs219.ffindex") os.system(f"touch {TMPL_PATH}/pdb70_cs219.ffdata") template_paths[k] = TMPL_PATH # gather a3m lines a3m_lines = {} for a3m_file in a3m_files: update_M,M = True,None for line in open(a3m_file,"r"): if len(line) > 0: if "\x00" in line: line = line.replace("\x00","") update_M = True if line.startswith(">") and update_M: M = int(line[1:].rstrip()) update_M = False if M not in a3m_lines: a3m_lines[M] = [] a3m_lines[M].append(line) # return results a3m_lines = ["".join(a3m_lines[n]) for n in Ms] if use_templates: template_paths_ = [] for n in Ms: if n not in template_paths: template_paths_.append(None) print(f"{n-N}\tno_templates_found") else: template_paths_.append(template_paths[n]) template_paths = template_paths_ if isinstance(x, str): return (a3m_lines[0], template_paths[0]) if use_templates else a3m_lines[0] else: return (a3m_lines, template_paths) if use_templates else a3m_lines ######################################################################### # utils ######################################################################### def get_hash(x): return hashlib.sha1(x.encode()).hexdigest() def homooligomerize(msas, deletion_matrices, homooligomer=1): if homooligomer == 1: return msas, deletion_matrices else: new_msas = [] new_mtxs = [] for o in range(homooligomer): for msa,mtx in zip(msas, deletion_matrices): num_res = len(msa[0]) L = num_res * o R = num_res * (homooligomer-(o+1)) new_msas.append(["-"*L+s+"-"*R for s in msa]) new_mtxs.append([[0]*L+m+[0]*R for m in mtx]) return new_msas, new_mtxs # keeping typo for cross-compatibility def homooliomerize(msas, deletion_matrices, homooligomer=1): return homooligomerize(msas, deletion_matrices, homooligomer=homooligomer) def homooligomerize_heterooligomer(msas, deletion_matrices, lengths, homooligomers): ''' ----- inputs ----- msas: list of msas deletion_matrices: list of deletion matrices lengths: list of lengths for each component in complex homooligomers: list of number of homooligomeric copies for each component ----- outputs ----- (msas, deletion_matrices) ''' if max(homooligomers) == 1: return msas, deletion_matrices elif len(homooligomers) == 1: return homooligomerize(msas, deletion_matrices, homooligomers[0]) else: frag_ij = [[0,lengths[0]]] for length in lengths[1:]: j = frag_ij[-1][-1] frag_ij.append([j,j+length]) # for every msa mod_msas, mod_mtxs = [],[] for msa, mtx in zip(msas, deletion_matrices): mod_msa, mod_mtx = [],[] # for every sequence for n,(s,m) in enumerate(zip(msa,mtx)): # split sequence _s,_m,_ok = [],[],[] for i,j in frag_ij: _s.append(s[i:j]); _m.append(m[i:j]) _ok.append(max([o != "-" for o in _s[-1]])) if n == 0: # if first query sequence mod_msa.append("".join([x*h for x,h in zip(_s,homooligomers)])) mod_mtx.append(sum([x*h for x,h in zip(_m,homooligomers)],[])) elif sum(_ok) == 1: # elif one fragment: copy each fragment to every homooligomeric copy a = _ok.index(True) for h_a in range(homooligomers[a]): _blank_seq = [["-"*l]*h for l,h in zip(lengths,homooligomers)] _blank_mtx = [[[0]*l]*h for l,h in zip(lengths,homooligomers)] _blank_seq[a][h_a] = _s[a] _blank_mtx[a][h_a] = _m[a] mod_msa.append("".join(["".join(x) for x in _blank_seq])) mod_mtx.append(sum([sum(x,[]) for x in _blank_mtx],[])) else: # else: copy fragment pair to every homooligomeric copy pair for a in range(len(lengths)-1): if _ok[a]: for b in range(a+1,len(lengths)): if _ok[b]: for h_a in range(homooligomers[a]): for h_b in range(homooligomers[b]): _blank_seq = [["-"*l]*h for l,h in zip(lengths,homooligomers)] _blank_mtx = [[[0]*l]*h for l,h in zip(lengths,homooligomers)] for c,h_c in zip([a,b],[h_a,h_b]): _blank_seq[c][h_c] = _s[c] _blank_mtx[c][h_c] = _m[c] mod_msa.append("".join(["".join(x) for x in _blank_seq])) mod_mtx.append(sum([sum(x,[]) for x in _blank_mtx],[])) mod_msas.append(mod_msa) mod_mtxs.append(mod_mtx) return mod_msas, mod_mtxs def chain_break(idx_res, Ls, length=200): # Minkyung's code # add big enough number to residue index to indicate chain breaks L_prev = 0 for L_i in Ls[:-1]: idx_res[L_prev+L_i:] += length L_prev += L_i return idx_res ################################################## # plotting ################################################## def plot_plddt_legend(dpi=100): thresh = ['plDDT:','Very low (<50)','Low (60)','OK (70)','Confident (80)','Very high (>90)'] plt.figure(figsize=(1,0.1),dpi=dpi) ######################################## for c in ["#FFFFFF","#FF0000","#FFFF00","#00FF00","#00FFFF","#0000FF"]: plt.bar(0, 0, color=c) plt.legend(thresh, frameon=False, loc='center', ncol=6, handletextpad=1, columnspacing=1, markerscale=0.5,) plt.axis(False) return plt def plot_ticks(Ls): Ln = sum(Ls) L_prev = 0 for L_i in Ls[:-1]: L = L_prev + L_i L_prev += L_i plt.plot([0,Ln],[L,L],color="black") plt.plot([L,L],[0,Ln],color="black") ticks = np.cumsum([0]+Ls) ticks = (ticks[1:] + ticks[:-1])/2 plt.yticks(ticks,alphabet_list[:len(ticks)]) def plot_confidence(plddt, pae=None, Ls=None, dpi=100): use_ptm = False if pae is None else True if use_ptm: plt.figure(figsize=(10,3), dpi=dpi) plt.subplot(1,2,1); else: plt.figure(figsize=(5,3), dpi=dpi) plt.title('Predicted lDDT') plt.plot(plddt) if Ls is not None: L_prev = 0 for L_i in Ls[:-1]: L = L_prev + L_i L_prev += L_i plt.plot([L,L],[0,100],color="black") plt.ylim(0,100) plt.ylabel('plDDT') plt.xlabel('position') if use_ptm: plt.subplot(1,2,2);plt.title('Predicted Aligned Error') Ln = pae.shape[0] plt.imshow(pae,cmap="bwr",vmin=0,vmax=30,extent=(0, Ln, Ln, 0)) if Ls is not None and len(Ls) > 1: plot_ticks(Ls) plt.colorbar() plt.xlabel('Scored residue') plt.ylabel('Aligned residue') return plt def plot_msas(msas, ori_seq=None, sort_by_seqid=True, deduplicate=True, dpi=100, return_plt=True): ''' plot the msas ''' if ori_seq is None: ori_seq = msas[0][0] seqs = ori_seq.replace("/","").split(":") seqs_dash = ori_seq.replace(":","").split("/") Ln = np.cumsum(np.append(0,[len(seq) for seq in seqs])) Ln_dash = np.cumsum(np.append(0,[len(seq) for seq in seqs_dash])) Nn,lines = [],[] for msa in msas: msa_ = set(msa) if deduplicate else msa if len(msa_) > 0: Nn.append(len(msa_)) msa_ = np.asarray([list(seq) for seq in msa_]) gap_ = msa_ != "-" qid_ = msa_ == np.array(list("".join(seqs))) gapid = np.stack([gap_[:,Ln[i]:Ln[i+1]].max(-1) for i in range(len(seqs))],-1) seqid = np.stack([qid_[:,Ln[i]:Ln[i+1]].mean(-1) for i in range(len(seqs))],-1).sum(-1) / (gapid.sum(-1) + 1e-8) non_gaps = gap_.astype(np.float) non_gaps[non_gaps == 0] = np.nan if sort_by_seqid: lines.append(non_gaps[seqid.argsort()]*seqid[seqid.argsort(),None]) else: lines.append(non_gaps[::-1] * seqid[::-1,None]) Nn = np.cumsum(np.append(0,Nn)) lines = np.concatenate(lines,0) if return_plt: plt.figure(figsize=(8,5),dpi=dpi) plt.title("Sequence coverage") plt.imshow(lines, interpolation='nearest', aspect='auto', cmap="rainbow_r", vmin=0, vmax=1, origin='lower', extent=(0, lines.shape[1], 0, lines.shape[0])) for i in Ln[1:-1]: plt.plot([i,i],[0,lines.shape[0]],color="black") for i in Ln_dash[1:-1]: plt.plot([i,i],[0,lines.shape[0]],"--",color="black") for j in Nn[1:-1]: plt.plot([0,lines.shape[1]],[j,j],color="black") plt.plot((np.isnan(lines) == False).sum(0), color='black') plt.xlim(0,lines.shape[1]) plt.ylim(0,lines.shape[0]) plt.colorbar(label="Sequence identity to query") plt.xlabel("Positions") plt.ylabel("Sequences") if return_plt: return plt def read_pdb_renum(pdb_filename, Ls=None): if Ls is not None: L_init = 0 new_chain = {} for L,c in zip(Ls, alphabet_list): new_chain.update({i:c for i in range(L_init,L_init+L)}) L_init += L n,pdb_out = 1,[] resnum_,chain_ = 1,"A" for line in open(pdb_filename,"r"): if line[:4] == "ATOM": chain = line[21:22] resnum = int(line[22:22+5]) if resnum != resnum_ or chain != chain_: resnum_,chain_ = resnum,chain n += 1 if Ls is None: pdb_out.append("%s%4i%s" % (line[:22],n,line[26:])) else: pdb_out.append("%s%s%4i%s" % (line[:21],new_chain[n-1],n,line[26:])) return "".join(pdb_out) def show_pdb(pred_output_path, show_sidechains=False, show_mainchains=False, color="lDDT", chains=None, Ls=None, vmin=50, vmax=90, color_HP=False, size=(800,480)): if chains is None: chains = 1 if Ls is None else len(Ls) view = py3Dmol.view(js='https://3dmol.org/build/3Dmol.js', width=size[0], height=size[1]) view.addModel(read_pdb_renum(pred_output_path, Ls),'pdb') if color == "lDDT": view.setStyle({'cartoon': {'colorscheme': {'prop':'b','gradient': 'roygb','min':vmin,'max':vmax}}}) elif color == "rainbow": view.setStyle({'cartoon': {'color':'spectrum'}}) elif color == "chain": for n,chain,color in zip(range(chains),alphabet_list,pymol_color_list): view.setStyle({'chain':chain},{'cartoon': {'color':color}}) if show_sidechains: BB = ['C','O','N'] HP = ["ALA","GLY","VAL","ILE","LEU","PHE","MET","PRO","TRP","CYS","TYR"] if color_HP: view.addStyle({'and':[{'resn':HP},{'atom':BB,'invert':True}]}, {'stick':{'colorscheme':"yellowCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':HP,'invert':True},{'atom':BB,'invert':True}]}, {'stick':{'colorscheme':"whiteCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':"GLY"},{'atom':'CA'}]}, {'sphere':{'colorscheme':"yellowCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':"PRO"},{'atom':['C','O'],'invert':True}]}, {'stick':{'colorscheme':"yellowCarbon",'radius':0.3}}) else: view.addStyle({'and':[{'resn':["GLY","PRO"],'invert':True},{'atom':BB,'invert':True}]}, {'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':"GLY"},{'atom':'CA'}]}, {'sphere':{'colorscheme':f"WhiteCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':"PRO"},{'atom':['C','O'],'invert':True}]}, {'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}}) if show_mainchains: BB = ['C','O','N','CA'] view.addStyle({'atom':BB},{'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}}) view.zoomTo() return view def plot_plddts(plddts, Ls=None, dpi=100, fig=True): if fig: plt.figure(figsize=(8,5),dpi=100) plt.title("Predicted lDDT per position") for n,plddt in enumerate(plddts): plt.plot(plddt,label=f"rank_{n+1}") if Ls is not None: L_prev = 0 for L_i in Ls[:-1]: L = L_prev + L_i L_prev += L_i plt.plot([L,L],[0,100],color="black") plt.legend() plt.ylim(0,100) plt.ylabel("Predicted lDDT") plt.xlabel("Positions") return plt def plot_paes(paes, Ls=None, dpi=100, fig=True): num_models = len(paes) if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi) for n,pae in enumerate(paes): plt.subplot(1,num_models,n+1) plt.title(f"rank_{n+1}") Ln = pae.shape[0] plt.imshow(pae,cmap="bwr",vmin=0,vmax=30,extent=(0, Ln, Ln, 0)) if Ls is not None and len(Ls) > 1: plot_ticks(Ls) plt.colorbar() return plt def plot_adjs(adjs, Ls=None, dpi=100, fig=True): num_models = len(adjs) if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi) for n,adj in enumerate(adjs): plt.subplot(1,num_models,n+1) plt.title(f"rank_{n+1}") Ln = adj.shape[0] plt.imshow(adj,cmap="binary",vmin=0,vmax=1,extent=(0, Ln, Ln, 0)) if Ls is not None and len(Ls) > 1: plot_ticks(Ls) plt.colorbar() return plt def plot_dists(dists, Ls=None, dpi=100, fig=True): num_models = len(dists) if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi) for n,dist in enumerate(dists): plt.subplot(1,num_models,n+1) plt.title(f"rank_{n+1}") Ln = dist.shape[0] plt.imshow(dist,extent=(0, Ln, Ln, 0)) if Ls is not None and len(Ls) > 1: plot_ticks(Ls) plt.colorbar() return plt ########################################################################## ########################################################################## def kabsch(a, b, weights=None, return_v=False): a = np.asarray(a) b = np.asarray(b) if weights is None: weights = np.ones(len(b)) else: weights = np.asarray(weights) B = np.einsum('ji,jk->ik', weights[:, None] * a, b) u, s, vh = np.linalg.svd(B) if np.linalg.det(u @ vh) < 0: u[:, -1] = -u[:, -1] if return_v: return u else: return u @ vh def plot_pseudo_3D(xyz, c=None, ax=None, chainbreak=5, cmap="gist_rainbow", line_w=2.0, cmin=None, cmax=None, zmin=None, zmax=None): def rescale(a,amin=None,amax=None): a = np.copy(a) if amin is None: amin = a.min() if amax is None: amax = a.max() a[a < amin] = amin a[a > amax] = amax return (a - amin)/(amax - amin) # make segments xyz = np.asarray(xyz) seg = np.concatenate([xyz[:-1,None,:],xyz[1:,None,:]],axis=-2) seg_xy = seg[...,:2] seg_z = seg[...,2].mean(-1) ord = seg_z.argsort() # set colors if c is None: c = np.arange(len(seg))[::-1] else: c = (c[1:] + c[:-1])/2 c = rescale(c,cmin,cmax) if isinstance(cmap, str): if cmap == "gist_rainbow": c *= 0.75 colors = matplotlib.cm.get_cmap(cmap)(c) else: colors = cmap(c) if chainbreak is not None: dist = np.linalg.norm(xyz[:-1] - xyz[1:], axis=-1) colors[...,3] = (dist < chainbreak).astype(np.float) # add shade/tint based on z-dimension z = rescale(seg_z,zmin,zmax)[:,None] tint, shade = z/3, (z+2)/3 colors[:,:3] = colors[:,:3] + (1 - colors[:,:3]) * tint colors[:,:3] = colors[:,:3] * shade set_lim = False if ax is None: fig, ax = plt.subplots() fig.set_figwidth(5) fig.set_figheight(5) set_lim = True else: fig = ax.get_figure() if ax.get_xlim() == (0,1): set_lim = True if set_lim: xy_min = xyz[:,:2].min() - line_w xy_max = xyz[:,:2].max() + line_w ax.set_xlim(xy_min,xy_max) ax.set_ylim(xy_min,xy_max) ax.set_aspect('equal') # determine linewidths width = fig.bbox_inches.width * ax.get_position().width linewidths = line_w * 72 * width / np.diff(ax.get_xlim()) lines = mcoll.LineCollection(seg_xy[ord], colors=colors[ord], linewidths=linewidths, path_effects=[matplotlib.patheffects.Stroke(capstyle="round")]) return ax.add_collection(lines) def add_text(text, ax): return plt.text(0.5, 1.01, text, horizontalalignment='center', verticalalignment='bottom', transform=ax.transAxes) def plot_protein(protein=None, pos=None, plddt=None, Ls=None, dpi=100, best_view=True, line_w=2.0): if protein is not None: pos = np.asarray(protein.atom_positions[:,1,:]) plddt = np.asarray(protein.b_factors[:,0]) # get best view if best_view: if plddt is not None: weights = plddt/100 pos = pos - (pos * weights[:,None]).sum(0,keepdims=True) / weights.sum() pos = pos @ kabsch(pos, pos, weights, return_v=True) else: pos = pos - pos.mean(0,keepdims=True) pos = pos @ kabsch(pos, pos, return_v=True) if plddt is not None: fig, (ax1, ax2) = plt.subplots(1,2) fig.set_figwidth(6); fig.set_figheight(3) ax = [ax1, ax2] else: fig, ax1 = plt.subplots(1,1) fig.set_figwidth(3); fig.set_figheight(3) ax = [ax1] fig.set_dpi(dpi) fig.subplots_adjust(top = 0.9, bottom = 0.1, right = 1, left = 0, hspace = 0, wspace = 0) xy_min = pos[...,:2].min() - line_w xy_max = pos[...,:2].max() + line_w for a in ax: a.set_xlim(xy_min, xy_max) a.set_ylim(xy_min, xy_max) a.axis(False) if Ls is None or len(Ls) == 1: # color N->C c = np.arange(len(pos))[::-1] plot_pseudo_3D(pos, line_w=line_w, ax=ax1) add_text("colored by N→C", ax1) else: # color by chain c = np.concatenate([[n]*L for n,L in enumerate(Ls)]) if len(Ls) > 40: plot_pseudo_3D(pos, c=c, line_w=line_w, ax=ax1) else: plot_pseudo_3D(pos, c=c, cmap=pymol_cmap, cmin=0, cmax=39, line_w=line_w, ax=ax1) add_text("colored by chain", ax1) if plddt is not None: # color by pLDDT plot_pseudo_3D(pos, c=plddt, cmin=50, cmax=90, line_w=line_w, ax=ax2) add_text("colored by pLDDT", ax2) return fig