import tensorflow as tf import os import pathlib import time import datetime from matplotlib import pyplot as plt import numpy as np from cv2 import cv2 import math def color_imread(path): img = cv2.imread(path) img = cv2.cvtColor(img , cv2.COLOR_BGR2RGB) img = (img/127.5) - 1 img = img.astype(np.float32) return img def gray_imread(path): img = cv2.imread(path) img = cv2.cvtColor(img ,cv2.COLOR_BGR2GRAY) img = img.astype(np.float32) return img def reshape(gray_img): gray_img = np.asarray(gray_img) gray_img = gray_img.reshape(256,256,1) return gray_img array_Gen_loss=[] def histogram_graphic(img): hist,bins = np.histogram(img.flatten(),256,[0,256]) cdf = hist.cumsum() cdf_normalized = cdf * float(hist.max()) / cdf.max() plt.plot(cdf_normalized, color = 'b') plt.hist(img.flatten(),256,[0,256], color = 'r') plt.xlim([0, 230]) plt.legend(('cdf','histogram'), loc = 'upper left') plt.show() def preprocessing(path): img = cv2.imread(path) img = np.asarray(img).reshape(256,256,3) #print(img.shape) #cv2.imshow(img) #cv2.imwrite("/content/drive/MyDrive/ColabNotebooks/enhance/Before_hist_equalizer.png",img) #Işık ayarı hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) #hsv formatında gerekiyor hue, sat, val = cv2.split(hsv) mid = 0.5 mean = np.mean(val) gamma = math.log(mid*255)/math.log(mean) #print("Gamma:",gamma) #Çıkan gamma değerine göre ters işlem uygulayacak def image_colorfulness(image): # split the image into its respective RGB components (B, G, R) = cv2.split(image.astype("float")) # compute rg = R - G rg = np.absolute(R - G) # compute yb = 0.5 * (R + G) - B yb = np.absolute(0.5 * (R + G) - B) # compute the mean and standard deviation of both `rg` and `yb` (rbMean, rbStd) = (np.mean(rg), np.std(rg)) (ybMean, ybStd) = (np.mean(yb), np.std(yb)) # combine the mean and standard deviations stdRoot = np.sqrt((rbStd ** 2) + (ybStd ** 2)) meanRoot = np.sqrt((rbMean ** 2) + (ybMean ** 2)) # derive the "colorfulness" metric and return it return stdRoot + (0.3 * meanRoot) # sınırı 24 from PIL import Image, ImageEnhance def add_saturation(path): clr = cv2.imread(path) value = image_colorfulness(clr) print(value) img = Image.open(path) enhanced_obj = ImageEnhance.Color(img) if value<30 : #renk doygunluğu iyi durumda çıkanları da bir miktar arttırmak için sınırı 30 yapıyoruz enhanced_obj.enhance((30-value)*0.1 + 0.75).save("enhance/deneme_sat.jpg") #add_saturation("/content/drive/MyDrive/ColabNotebooks/enhance/cikti2.jpeg") def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=1.0, threshold=0): """Return a sharpened version of the image, using an unsharp mask.""" blurred = cv2.GaussianBlur(image, kernel_size, sigma) sharpened = float(amount + 1) * image - float(amount) * blurred sharpened = np.maximum(sharpened, np.zeros(sharpened.shape)) sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape)) sharpened = sharpened.round().astype(np.uint8) if threshold > 0: low_contrast_mask = np.absolute(image - blurred) < threshold np.copyto(sharpened, image, where=low_contrast_mask) return sharpened def example(image,name): sharpened_image = unsharp_mask(image) cv2.imwrite(name, sharpened_image) def ssim_psnr(pre,target): ssim_res = ssim(pre,target) psnr_res = psnr(pre,target) ssim_results.append(ssim_res) psnr_results.append(ssim_results) def result(Input,Choice,Step): if Choice=="Indoor-Coloring": if Step == 1.0: pre_trained = tf.keras.models.load_model("indoor_1.h5") if Step == 2.0: pre_trained = tf.keras.models.load_model("indoor_2.h5") if Step == 3.0: pre_trained = tf.keras.models.load_model("indoor_3.h5") size0 = Input.shape[0] size1 = Input.shape[1] start = Input Input = cv2.resize(Input, (256,256), interpolation = cv2.INTER_AREA) Input = cv2.cvtColor(Input , cv2.COLOR_BGR2GRAY) Input = np.array(Input).reshape(1,256,256,1) prediction = pre_trained(Input,training=True) Input = prediction[0] Input = (Input+1)*127.5 Input = np.uint8(Input) Input = cv2.resize(Input, (size1,size0), interpolation = cv2.INTER_AREA) finish = Input mse = np.mean((start - finish) ** 2) MAX = np.iinfo(start.dtype).max if mse == 0: Psnr = 100 else: Psnr = 20 * math.log10(MAX / math.sqrt(mse)) return Input,Psnr if Choice=="Outdoor-Coloring": if Step == 1.0: pre_trained = tf.keras.models.load_model("outdoor_1.h5") if Step == 2.0: pre_trained = tf.keras.models.load_model("outdoor_2.h5") if Step == 3.0: pre_trained = tf.keras.models.load_model("outdoor_3.h5") size0 = Input.shape[0] size1 = Input.shape[1] start = Input Input = cv2.resize(Input, (256,256), interpolation = cv2.INTER_AREA) Input = cv2.cvtColor(Input , cv2.COLOR_BGR2GRAY) Input = np.array(Input).reshape(1,256,256,1) prediction = pre_trained(Input,training=True) Input = prediction[0] Input = (Input+1)*127.5 Input = np.uint8(Input) Input = cv2.resize(Input, (size1,size0), interpolation = cv2.INTER_AREA) finish = Input mse = np.mean((start - finish) ** 2) MAX = np.iinfo(start.dtype).max if mse == 0: Psnr = 100 else: Psnr = 20 * math.log10(MAX / math.sqrt(mse)) return Input,Psnr if Choice =="Enhancement": pre_trained2 = tf.keras.models.load_model("generatorLR-HR_300.h5") size0 = Input.shape[0] size1 = Input.shape[1] Input = cv2.resize(Input, (256,256), interpolation = cv2.INTER_AREA) Input = np.array(Input).reshape(1,256,256,3) prediction = pre_trained2(Input,training=True) Input = prediction[0] Input = (Input+1)*127.5 Input = np.uint8(Input) Input = cv2.resize(Input, (size1,size0), interpolation = cv2.INTER_AREA) return Input #lst = cv2.imread('/content/drive/MyDrive/ColabNotebooks/enhance/low-sat.jpg') #r = result(lst) #cv2.imshow(r) import gradio as gr iface = gr.Interface(fn=result, inputs=[gr.inputs.Image(type="numpy",image_mode="RGB"),gr.inputs.Radio(["Indoor-Coloring","Outdoor-Coloring","Face-Coloring","Enhancement","Repair"]),gr.inputs.Slider(minimum=1.0,maximum=3.0,default=3.0,step=1.0)], outputs=[gr.outputs.Image( type="auto", label="Output"),gr.outputs.Textbox(type="number",label="Psnr Between Input and Output")],theme="grass", live=True ,css=""" body {background-color: rgba(127,191,63,0.48)} """,title="Colorization and Enhancement of Old Images",article=""" Article""",examples=[["indoor.png","Indoor-Coloring",3.0],["indoor_10468.png","Indoor-Coloring",3.0],["outdoor_46.png","Outdoor-Coloring",3.0],["outdoor_1755.png","Outdoor-Coloring",3.0]]) iface.launch(debug="True",show_tips="True",inbrowser=True)