import spaces import os import torch import random from huggingface_hub import snapshot_download from diffusers import StableDiffusionXLPipeline, AutoencoderKL from diffusers import ( EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSDEScheduler, HeunDiscreteScheduler, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UniPCMultistepScheduler, ) from diffusers.models.attention_processor import AttnProcessor2_0 import gradio as gr from PIL import Image import numpy as np from transformers import AutoProcessor, AutoModelForCausalLM, pipeline import requests from RealESRGAN import RealESRGAN import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) def download_file(url, folder_path, filename): if not os.path.exists(folder_path): os.makedirs(folder_path) file_path = os.path.join(folder_path, filename) if os.path.isfile(file_path): print(f"File already exists: {file_path}") else: response = requests.get(url, stream=True) if response.status_code == 200: with open(file_path, 'wb') as file: for chunk in response.iter_content(chunk_size=1024): file.write(chunk) print(f"File successfully downloaded and saved: {file_path}") else: print(f"Error downloading the file. Status code: {response.status_code}") # Download ESRGAN models download_file("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth") download_file("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth") # Download the model files ckpt_dir_pony = snapshot_download(repo_id="John6666/pony-realism-v21main-sdxl") ckpt_dir_cyber = snapshot_download(repo_id="John6666/cyberrealistic-pony-v62-sdxl") ckpt_dir_stallion = snapshot_download(repo_id="John6666/stallion-dreams-pony-realistic-v1-sdxl") # Load the models vae_pony = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_pony, "vae"), torch_dtype=torch.float16) vae_cyber = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_cyber, "vae"), torch_dtype=torch.float16) vae_stallion = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_stallion, "vae"), torch_dtype=torch.float16) pipe_pony = StableDiffusionXLPipeline.from_pretrained( ckpt_dir_pony, vae=vae_pony, torch_dtype=torch.float16, use_safetensors=True, variant="fp16" ) pipe_cyber = StableDiffusionXLPipeline.from_pretrained( ckpt_dir_cyber, vae=vae_cyber, torch_dtype=torch.float16, use_safetensors=True, variant="fp16" ) pipe_stallion = StableDiffusionXLPipeline.from_pretrained( ckpt_dir_stallion, vae=vae_stallion, torch_dtype=torch.float16, use_safetensors=True, variant="fp16" ) pipe_pony = pipe_pony.to("cuda") pipe_cyber = pipe_cyber.to("cuda") pipe_stallion = pipe_stallion.to("cuda") pipe_pony.unet.set_attn_processor(AttnProcessor2_0()) pipe_cyber.unet.set_attn_processor(AttnProcessor2_0()) pipe_stallion.unet.set_attn_processor(AttnProcessor2_0()) # Define samplers samplers = { "Euler a": EulerAncestralDiscreteScheduler.from_config(pipe_pony.scheduler.config), "DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(pipe_pony.scheduler.config, use_karras_sigmas=True), "Heun": HeunDiscreteScheduler.from_config(pipe_pony.scheduler.config), # New samplers "DPM++ 2M SDE Karras": DPMSolverMultistepScheduler.from_config(pipe_pony.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"), "DPM++ 2M": DPMSolverMultistepScheduler.from_config(pipe_pony.scheduler.config), "DDIM": DDIMScheduler.from_config(pipe_pony.scheduler.config), "LMS": LMSDiscreteScheduler.from_config(pipe_pony.scheduler.config), "PNDM": PNDMScheduler.from_config(pipe_pony.scheduler.config), "UniPC": UniPCMultistepScheduler.from_config(pipe_pony.scheduler.config), } DEFAULT_POSITIVE_PREFIX = "Score_9 score_8_up score_7_up BREAK" DEFAULT_POSITIVE_SUFFIX = "(masterpiece) very_aesthetic detailed_face cinematic footage" DEFAULT_NEGATIVE_PREFIX = "score_1, score_2, score_3, text" DEFAULT_NEGATIVE_SUFFIX = "nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn" # Initialize Florence model device = "cuda" if torch.cuda.is_available() else "cpu" florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) # Prompt Enhancer enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device) enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device) class LazyRealESRGAN: def __init__(self, device, scale): self.device = device self.scale = scale self.model = None def load_model(self): if self.model is None: self.model = RealESRGAN(self.device, scale=self.scale) self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False) def predict(self, img): self.load_model() return self.model.predict(img) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2) lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4) # Florence caption function def florence_caption(image): # Convert image to PIL if it's not already if not isinstance(image, Image.Image): image = Image.fromarray(image) inputs = florence_processor(text="", images=image, return_tensors="pt").to(device) generated_ids = florence_model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3, ) generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = florence_processor.post_process_generation( generated_text, task="", image_size=(image.width, image.height) ) return parsed_answer[""] # Prompt Enhancer function def enhance_prompt(input_prompt, model_choice): if model_choice == "Medium": result = enhancer_medium("Enhance the description: " + input_prompt) enhanced_text = result[0]['summary_text'] else: # Long result = enhancer_long("Enhance the description: " + input_prompt) enhanced_text = result[0]['summary_text'] return enhanced_text def upscale_image(image, scale): # Ensure image is a PIL Image object if not isinstance(image, Image.Image): if isinstance(image, np.ndarray): image = Image.fromarray(image) else: raise ValueError("Input must be a PIL Image or a numpy array") if scale == 2: return lazy_realesrgan_x2.predict(image) elif scale == 4: return lazy_realesrgan_x4.predict(image) else: return image @spaces.GPU(duration=120) def generate_image(model_choice, additional_positive_prompt, additional_negative_prompt, height, width, num_inference_steps, guidance_scale, num_images_per_prompt, use_random_seed, seed, sampler, clip_skip, use_florence2, use_medium_enhancer, use_long_enhancer, use_positive_prefix, use_positive_suffix, use_negative_prefix, use_negative_suffix, use_upscaler, upscale_factor, input_image=None, progress=gr.Progress(track_tqdm=True)): # Select the appropriate pipe based on the model choice if model_choice == "Pony Realism v21": pipe = pipe_pony elif model_choice == "Cyber Realistic Pony v61": pipe = pipe_cyber else: # "Stallion Dreams Pony Realistic v1" pipe = pipe_stallion if use_random_seed: seed = random.randint(0, 2**32 - 1) else: seed = int(seed) # Ensure seed is an integer # Set the scheduler based on the selected sampler pipe.scheduler = samplers[sampler] # Set clip skip pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1) # Start with the default positive prompt prefix if enabled full_positive_prompt = DEFAULT_POSITIVE_PREFIX + ", " if use_positive_prefix else "" # Add Florence-2 caption if enabled and image is provided if use_florence2 and input_image is not None: florence2_caption = florence_caption(input_image) florence2_caption = florence2_caption.lower().replace('.', ',') additional_positive_prompt = f"{florence2_caption}, {additional_positive_prompt}" if additional_positive_prompt else florence2_caption # Enhance only the additional positive prompt if enhancers are enabled if additional_positive_prompt: enhanced_prompt = additional_positive_prompt if use_medium_enhancer: medium_enhanced = enhance_prompt(enhanced_prompt, "Medium") medium_enhanced = medium_enhanced.lower().replace('.', ',') enhanced_prompt = f"{enhanced_prompt}, {medium_enhanced}" if use_long_enhancer: long_enhanced = enhance_prompt(enhanced_prompt, "Long") long_enhanced = long_enhanced.lower().replace('.', ',') enhanced_prompt = f"{enhanced_prompt}, {long_enhanced}" full_positive_prompt += enhanced_prompt # Add the default positive suffix if enabled if use_positive_suffix: full_positive_prompt += f", {DEFAULT_POSITIVE_SUFFIX}" # Combine default negative prompt with additional negative prompt full_negative_prompt = "" if use_negative_prefix: full_negative_prompt += f"{DEFAULT_NEGATIVE_PREFIX}, " full_negative_prompt += additional_negative_prompt if additional_negative_prompt else "" if use_negative_suffix: full_negative_prompt += f", {DEFAULT_NEGATIVE_SUFFIX}" try: images = pipe( prompt=full_positive_prompt, negative_prompt=full_negative_prompt, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_images_per_prompt, generator=torch.Generator(pipe.device).manual_seed(seed) ).images if use_upscaler: print("Upscaling images") upscaled_images = [] for i, img in enumerate(images): print(f"Upscaling image {i+1}") if not isinstance(img, Image.Image): print(f"Converting image {i+1} to PIL Image") img = Image.fromarray(np.uint8(img)) upscaled_img = upscale_image(img, upscale_factor) upscaled_images.append(upscaled_img) images = upscaled_images print("Returning results") return images, seed, full_positive_prompt, full_negative_prompt except Exception as e: print(f"Error during image generation: {str(e)}") import traceback traceback.print_exc() return None, seed, full_positive_prompt, full_negative_prompt # Gradio interface with gr.Blocks(theme='bethecloud/storj_theme') as demo: gr.HTML("""

Pony Realism / Cyber Realism / Stallion Dreams

[Pony Realism] [Cyberrealistic Pony] [Stallion Dreams]
[Pony Realism civitai] [Cyberrealistic Pony civitai] [Stallion Dreams civitai] [Florence-2 Model] [Prompt Enhancer Long] [Prompt Enhancer Medium]

""") with gr.Row(): with gr.Column(scale=1): model_choice = gr.Dropdown( ["Pony Realism v21", "Cyber Realistic Pony v61", "Stallion Dreams Pony Realistic v1"], label="Model Choice", value="Pony Realism v21") positive_prompt = gr.Textbox(label="Positive Prompt", placeholder="Add your positive prompt here") negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Add your negative prompt here") with gr.Accordion("Advanced settings", open=False): height = gr.Slider(512, 2048, 1024, step=64, label="Height") width = gr.Slider(512, 2048, 1024, step=64, label="Width") num_inference_steps = gr.Slider(20, 100, 30, step=1, label="Number of Inference Steps") guidance_scale = gr.Slider(1, 20, 6, step=0.1, label="Guidance Scale") num_images_per_prompt = gr.Slider(1, 4, 1, step=1, label="Number of images per prompt") use_random_seed = gr.Checkbox(label="Use Random Seed", value=True) seed = gr.Number(label="Seed", value=0, precision=0) sampler = gr.Dropdown(label="Sampler", choices=list(samplers.keys()), value="Euler a") clip_skip = gr.Slider(1, 4, 2, step=1, label="Clip skip") with gr.Accordion("Captioner and Enhancers", open=False): input_image = gr.Image(label="Input Image for Florence-2 Captioner") use_florence2 = gr.Checkbox(label="Use Florence-2 Captioner", value=False) use_medium_enhancer = gr.Checkbox(label="Use Medium Prompt Enhancer", value=False) use_long_enhancer = gr.Checkbox(label="Use Long Prompt Enhancer", value=False) with gr.Accordion("Upscaler Settings", open=False): use_upscaler = gr.Checkbox(label="Use Upscaler", value=False) upscale_factor = gr.Radio(label="Upscale Factor", choices=[2, 4], value=2) generate_btn = gr.Button("Generate Image") with gr.Accordion("Prefix and Suffix Settings", open=True): use_positive_prefix = gr.Checkbox( label="Use Positive Prefix", value=True, info=f"Prefix: {DEFAULT_POSITIVE_PREFIX}" ) use_positive_suffix = gr.Checkbox( label="Use Positive Suffix", value=True, info=f"Suffix: {DEFAULT_POSITIVE_SUFFIX}" ) use_negative_prefix = gr.Checkbox( label="Use Negative Prefix", value=True, info=f"Prefix: {DEFAULT_NEGATIVE_PREFIX}" ) use_negative_suffix = gr.Checkbox( label="Use Negative Suffix", value=True, info=f"Suffix: {DEFAULT_NEGATIVE_SUFFIX}" ) with gr.Column(scale=1): output_gallery = gr.Gallery(label="Result", elem_id="gallery", show_label=False) seed_used = gr.Number(label="Seed Used") full_positive_prompt_used = gr.Textbox(label="Full Positive Prompt Used") full_negative_prompt_used = gr.Textbox(label="Full Negative Prompt Used") generate_btn.click( fn=generate_image, inputs=[ model_choice, # Add this new input positive_prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, num_images_per_prompt, use_random_seed, seed, sampler, clip_skip, use_florence2, use_medium_enhancer, use_long_enhancer, use_positive_prefix, use_positive_suffix, use_negative_prefix, use_negative_suffix, use_upscaler, upscale_factor, input_image ], outputs=[output_gallery, seed_used, full_positive_prompt_used, full_negative_prompt_used] ) demo.launch(debug=True)