# AUTOGENERATED! DO NOT EDIT! File to edit: ../fastai_lesson_2_bearsInference_colab.ipynb. # %% auto 0 __all__ = ['learn', 'image', 'label', 'examples', 'intf', 'classify_image'] # %% ../fastai_lesson_2_bearsInference_colab.ipynb 1 #Imports import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) #hide #[ -e /content ] #pip install -Uqq fastbook # import fastbook # fastbook.setup_book() #hide # from fastbook import * # from fastai.vision.widgets import * # pip install fastai # %% ../fastai_lesson_2_bearsInference_colab.ipynb 3 from fastai.vision.all import * import gradio as gr # %% ../fastai_lesson_2_bearsInference_colab.ipynb 12 learn = load_learner('/bearClassifier.pkl') # %% ../fastai_lesson_2_bearsInference_colab.ipynb 15 def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) # %% ../fastai_lesson_2_bearsInference_colab.ipynb 18 #create gradio interface image = gr.inputs.Image(shape=(128,128)) label = gr.outputs.Label() examples = ['grizzlyBearA.jpg', 'blackBearA.jpg', 'teddyBearA.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples ) intf.launch(inline=False)