import gradio as gr from scipy.spatial.distance import cosine from transformers import AutoModel, AutoTokenizer from argparse import Namespace import torch from tsne import TSNE_Plot tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert") model_args = Namespace(do_mlm=None, pooler_type="cls", temp=0.05, mlp_only_train=False, init_embeddings_model=None) model = AutoModel.from_pretrained("silk-road/luotuo-bert", trust_remote_code=True, model_args=model_args) def divide_str(s, sep=['\n', '.', '。']): mid_len = len(s) // 2 # 中心点位置 best_sep_pos = len(s) + 1 # 最接近中心点的分隔符位置 best_sep = None # 最接近中心点的分隔符 for curr_sep in sep: sep_pos = s.rfind(curr_sep, 0, mid_len) # 从中心点往左找分隔符 if sep_pos > 0 and abs(sep_pos - mid_len) < abs(best_sep_pos - mid_len): best_sep_pos = sep_pos best_sep = curr_sep if not best_sep: # 没有找到分隔符 return s, '' return s[:best_sep_pos + 1], s[best_sep_pos + 1:] def strong_divide( s ): left, right = divide_str(s) if right != '': return left, right whole_sep = ['\n', '.', ',', '、', ';', ',', ';',\ ':', '!', '?', '(', ')', '”', '“', \ '’', '‘', '[', ']', '{', '}', '<', '>', \ '/', '''\''', '|', '-', '=', '+', '*', '%', \ '$', '''#''', '@', '&', '^', '_', '`', '~',\ '·', '…'] left, right = divide_str(s, sep = whole_sep ) if right != '': return left, right mid_len = len(s) // 2 return s[:mid_len], s[mid_len:] def generate_image(text_input): # 将输入的文本按行分割并保存到列表中 text_input = text_input.split('\n') label = [] for idx, i in enumerate(text_input): if '#' in i: label.append(i[i.find('#') + 1:]) text_input[idx] = i[:i.find('#')] else: label.append('No.{}'.format(idx)) divided_text = [strong_divide(i) for i in text_input] text_left, text_right = [i[0] for i in divided_text], [i[1] for i in divided_text] inputs = tokenizer(text_left, padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): embeddings_left = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output inputs = tokenizer(text_right, padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): embeddings_right = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output merged_list = text_left + text_right merged_embed = torch.cat((embeddings_left, embeddings_right), dim=0) tsne_plot = TSNE_Plot(merged_list, merged_embed, label=label * 2, n_annotation_positions=len(merged_list)) fig = tsne_plot.tsne_plot(n_sentence=len(merged_list), return_fig=True) return fig with gr.Blocks() as demo: name = gr.inputs.Textbox(lines=20, placeholder='在此输入歌词,每一行为一个输入,如果需要输入歌词对应的歌名,请用#隔开\n例如:听雷声 滚滚 他默默 闭紧嘴唇 停止吟唱暮色与想念 他此刻沉痛而危险 听雷声 滚滚 他渐渐 感到胸闷 乌云阻拦明月涌河湾 他起身独立向荒原#河北墨麒麟') output = gr.Plot() btn = gr.Button("Generate") btn.click(fn=generate_image, inputs=name, outputs=output, api_name="generate-image") demo.launch(debug=True)