from argparse import Namespace from openai import OpenAI # client = OpenAI(api_key=) from transformers import AutoModel, AutoTokenizer import torch import random import tiktoken import re import numpy as np import base64 import struct import os import tqdm import requests def get_access_token(): API_KEY = os.getenv("StoryAudit_API_AK") SECRET_KEY = os.getenv("StoryAudit_API_SK") """ 使用 AK,SK 生成鉴权签名(Access Token) :return: access_token,或是None(如果错误) """ url = "https://aip.baidubce.com/oauth/2.0/token" params = {"grant_type": "client_credentials", "client_id": API_KEY, "client_secret": SECRET_KEY} return str(requests.post(url, params=params).json().get("access_token")) ''' 文本审核接口 ''' def text_censor(text): request_url = "https://aip.baidubce.com/rest/2.0/solution/v1/text_censor/v2/user_defined" params = {"text":text} access_token = get_access_token() request_url = request_url + "?access_token=" + access_token headers = {'content-type': 'application/x-www-form-urlencoded'} response = requests.post(request_url, data=params, headers=headers) return response.json()["conclusion"] == "合规" def package_role( system_prompt, texts_path , embedding ): datas = [] # 暂时只有一种embedding 'luotuo_openai' embed_name = 'luotuo_openai' datas.append({ 'text':system_prompt , embed_name:'system_prompt'}) datas.append({ 'text':'Reserve Config Setting Here' , embed_name:'config'}) # debug_count = 3 # for file in os.listdir(texts_path): files = os.listdir(texts_path) for i in tqdm.tqdm(range(len(files))): file = files[i] # if file name end with txt if file.endswith(".txt"): file_path = os.path.join(texts_path, file) with open(file_path, 'r', encoding='utf-8') as f: current_str = f.read() current_vec = embedding(current_str) encode_vec = float_array_to_base64(current_vec) datas.append({ 'text':current_str , embed_name:encode_vec}) # debug_count -= 1 # if debug_count == 0: # break return datas import struct def string_to_base64(text): byte_array = b'' for char in text: num_bytes = char.encode('utf-8') byte_array += num_bytes base64_data = base64.b64encode(byte_array) return base64_data.decode('utf-8') def base64_to_string(base64_data): byte_array = base64.b64decode(base64_data) text = byte_array.decode('utf-8') return text def float_array_to_base64(float_arr): byte_array = b'' for f in float_arr: # 将每个浮点数打包为4字节 num_bytes = struct.pack('!f', f) byte_array += num_bytes # 将字节数组进行base64编码 base64_data = base64.b64encode(byte_array) return base64_data.decode('utf-8') def base64_to_float_array(base64_data): byte_array = base64.b64decode(base64_data) float_array = [] # 每 4 个字节解析为一个浮点数 for i in range(0, len(byte_array), 4): num = struct.unpack('!f', byte_array[i:i+4])[0] float_array.append(num) return float_array device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') _luotuo_model = None _luotuo_model_en = None _luotuo_en_tokenizer = None _enc_model = None # ======== add bge_zh mmodel # by Cheng Li # 这一次我们试图一次性去适配更多的模型 _model_pool = {} _tokenizer_pool = {} # BAAI/bge-small-zh-v1.5 def get_general_embeddings( sentences , model_name = "BAAI/bge-small-zh-v1.5" ): global _model_pool global _tokenizer_pool if model_name not in _model_pool: from transformers import AutoTokenizer, AutoModel _tokenizer_pool[model_name] = AutoTokenizer.from_pretrained(model_name) _model_pool[model_name] = AutoModel.from_pretrained(model_name) _model_pool[model_name].eval() # Tokenize sentences encoded_input = _tokenizer_pool[model_name](sentences, padding=True, truncation=True, return_tensors='pt', max_length = 512) # Compute token embeddings with torch.no_grad(): model_output = _model_pool[model_name](**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) return sentence_embeddings.cpu().tolist() def get_general_embedding( text_or_texts , model_name = "BAAI/bge-small-zh-v1.5" ): if isinstance(text_or_texts, str): return get_general_embeddings([text_or_texts], model_name)[0] else: return get_general_embeddings_safe(text_or_texts, model_name) general_batch_size = 16 import math def get_general_embeddings_safe(sentences, model_name = "BAAI/bge-small-zh-v1.5"): embeddings = [] num_batches = math.ceil(len(sentences) / general_batch_size) for i in tqdm.tqdm( range(num_batches) ): # print("run bge with batch ", i) start_index = i * general_batch_size end_index = min(len(sentences), start_index + general_batch_size) batch = sentences[start_index:end_index] embs = get_general_embeddings(batch, model_name) embeddings.extend(embs) return embeddings def get_bge_zh_embedding( text_or_texts ): return get_general_embedding(text_or_texts, "BAAI/bge-small-zh-v1.5") ## TODO: 重构bge_en部分的代码,复用general的函数 # ======== add bge model # by Cheng Li # for English only right now _bge_model = None _bge_tokenizer = None def get_bge_embeddings( sentences ): # unsafe ensure batch size by yourself global _bge_model global _bge_tokenizer if _bge_model is None: from transformers import AutoTokenizer, AutoModel _bge_tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-small-en-v1.5') _bge_model = AutoModel.from_pretrained('BAAI/bge-small-en-v1.5') _bge_model.eval() # Tokenize sentences encoded_input = _bge_tokenizer(sentences, padding=True, truncation=True, return_tensors='pt', max_length = 512) # Compute token embeddings with torch.no_grad(): model_output = _bge_model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) return sentence_embeddings.cpu().tolist() def get_bge_embedding( text_or_texts ): if isinstance(text_or_texts, str): return get_bge_embeddings([text_or_texts])[0] else: return get_bge_embeddings_safe(text_or_texts) bge_batch_size = 32 import math # from tqdm import tqdm def get_bge_embeddings_safe(sentences): embeddings = [] num_batches = math.ceil(len(sentences) / bge_batch_size) for i in tqdm.tqdm( range(num_batches) ): # print("run bge with batch ", i) start_index = i * bge_batch_size end_index = min(len(sentences), start_index + bge_batch_size) batch = sentences[start_index:end_index] embs = get_bge_embeddings(batch) embeddings.extend(embs) return embeddings # === add bge model def tiktokenizer( text ): global _enc_model if _enc_model is None: _enc_model = tiktoken.get_encoding("cl100k_base") return len(_enc_model.encode(text)) def response_postprocess(text,dialogue_bra_token = '「',dialogue_ket_token = '」'): lines = text.split('\n') new_lines = "" first_name = None for line in lines: line = line.strip(" ") match = re.match(r'^(.*?)[::]' + dialogue_bra_token + r"(.*?)" + dialogue_ket_token + r"$", line) if match: curr_name = match.group(1) # print(curr_name) if first_name is None: first_name = curr_name new_lines += (match.group(2)) else: if curr_name != first_name: return first_name + ":" + dialogue_bra_token + new_lines + dialogue_ket_token else: new_lines += (match.group(2)) else: if first_name == None: return text else: return first_name + ":" + dialogue_bra_token + new_lines + dialogue_ket_token return first_name + ":" + dialogue_bra_token + new_lines + dialogue_ket_token def download_models(): print("正在下载Luotuo-Bert") # Import our models. The package will take care of downloading the models automatically model_args = Namespace(do_mlm=None, pooler_type="cls", temp=0.05, mlp_only_train=False, init_embeddings_model=None) model = AutoModel.from_pretrained("silk-road/luotuo-bert-medium", trust_remote_code=True, model_args=model_args).to( device) print("Luotuo-Bert下载完毕") return model def get_luotuo_model(): global _luotuo_model if _luotuo_model is None: _luotuo_model = download_models() return _luotuo_model def luotuo_embedding(model, texts): # Tokenize the texts_source tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-medium") inputs = tokenizer(texts, padding=True, truncation=False, return_tensors="pt") inputs = inputs.to(device) # Extract the embeddings # Get the embeddings with torch.no_grad(): embeddings = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output return embeddings def luotuo_en_embedding( texts ): # this function implemented by Cheng global _luotuo_model_en global _luotuo_en_tokenizer if _luotuo_model_en is None: _luotuo_en_tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-en") _luotuo_model_en = AutoModel.from_pretrained("silk-road/luotuo-bert-en").to(device) if _luotuo_en_tokenizer is None: _luotuo_en_tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-en") inputs = _luotuo_en_tokenizer(texts, padding=True, truncation=False, return_tensors="pt") inputs = inputs.to(device) with torch.no_grad(): embeddings = _luotuo_model_en(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output return embeddings def get_embedding_for_chinese(model, texts): model = model.to(device) # str or strList texts = texts if isinstance(texts, list) else [texts] # 截断 for i in range(len(texts)): if len(texts[i]) > 510: texts[i] = texts[i][:510] if len(texts) >= 64: embeddings = [] chunk_size = 64 for i in range(0, len(texts), chunk_size): embeddings.append(luotuo_embedding(model, texts[i: i + chunk_size])) return torch.cat(embeddings, dim=0) else: return luotuo_embedding(model, texts) def is_chinese_or_english(text): # no longer use online openai api return "chinese" text = list(text) is_chinese, is_english = 0, 0 for char in text: # 判断字符的Unicode值是否在中文字符的Unicode范围内 if '\u4e00' <= char <= '\u9fa5': is_chinese += 4 # 判断字符是否为英文字符(包括大小写字母和常见标点符号) elif ('\u0041' <= char <= '\u005a') or ('\u0061' <= char <= '\u007a'): is_english += 1 if is_chinese >= is_english: return "chinese" else: return "english" def get_embedding_openai(text, model="text-embedding-ada-002"): text = text.replace("\n", " ") return client.embeddings.create(input = [text], model=model).data[0].embedding def get_embedding_for_english(text, model="text-embedding-ada-002"): text = text.replace("\n", " ") return client.embeddings.create(input = [text], model=model).data[0].embedding import os def luotuo_openai_embedding(texts, is_chinese= None ): """ when input is chinese, use luotuo_embedding when input is english, use openai_embedding texts can be a list or a string when texts is a list, return a list of embeddings, using batch inference when texts is a string, return a single embedding """ openai_key = os.environ.get("OPENAI_API_KEY") if isinstance(texts, list): index = random.randint(0, len(texts) - 1) if openai_key is None or is_chinese_or_english(texts[index]) == "chinese": return [embed.cpu().tolist() for embed in get_embedding_for_chinese(get_luotuo_model(), texts)] else: return [get_embedding_for_english(text) for text in texts] else: if openai_key is None or is_chinese_or_english(texts) == "chinese": return get_embedding_for_chinese(get_luotuo_model(), texts)[0].cpu().tolist() else: return get_embedding_for_english(texts) # compute cosine similarity between two vector def get_cosine_similarity( v1, v2): v1 = torch.tensor(v1).to(device) v2 = torch.tensor(v2).to(device) return torch.cosine_similarity(v1, v2, dim=0).item()