import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter import os from langchain_google_genai import GoogleGenerativeAIEmbeddings import google.generativeai as genai from langchain.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from dotenv import load_dotenv load_dotenv() os.getenv("GOOGLE_API_KEY") genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) footer=""" """ def get_pdf_text(pdf_docs): text="" for pdf in pdf_docs: pdf_reader= PdfReader(pdf) for page in pdf_reader.pages: text+= page.extract_text() return text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) vector_store.save_local("faiss_index") def get_conversational_chain(): prompt_template = """ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n Context:\n {context}?\n Question: \n{question}\n Answer: """ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"]) chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain def user_input(user_question): embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") try: new_db = FAISS.load_local("faiss_index", embeddings) docs = new_db.similarity_search(user_question) except Exception as e: st.markdown(f"""

Document not submitted. Please upload a pdf and then click on 'submit'. Only then we can answer your question

""", unsafe_allow_html=True) return None new_db = FAISS.load_local("faiss_index", embeddings) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() response = chain( {"input_documents":docs, "question": user_question} , return_only_outputs=True) print(response) st.markdown(f"""

{response["output_text"]}

""", unsafe_allow_html=True) def main(): # Set page config and header st.set_page_config("Chat PDF") st.markdown("""

POLYDOCS

""", unsafe_allow_html=True) st.markdown("""

Chat with your PDF

""", unsafe_allow_html=True) # Text input for user question st.markdown("""

Ask a Question from the PDF Files

""", unsafe_allow_html=True) user_question = st.text_input("") # If user inputs a question, process it if user_question: user_input(user_question) # Sidebar menu with st.sidebar: st.title("Menu") # File uploader for PDF files pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit Button", accept_multiple_files=True) # Button to submit and process PDF files if st.button("Submit"): with st.spinner("Processing..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.success("Uploaded") st.markdown(footer,unsafe_allow_html=True) if __name__ == "__main__": main()