# Adapted from https://github.com/lucidrains/muse-maskgit-pytorch import math from functools import partial import torch import torch.nn.functional as F def log(t, eps=1e-20): return torch.log(t.clamp(min=eps)) def gumbel_noise(t, generator=None): noise = torch.zeros_like(t).uniform_(0, 1, generator=generator) return -log(-log(noise)) def gumbel_sample(t, temperature=1.0, dim=-1, generator=None): return ((t / max(temperature, 1e-10)) + gumbel_noise(t, generator=generator)).argmax(dim=dim) def top_k(logits, thres=0.9): k = math.ceil((1 - thres) * logits.shape[-1]) val, ind = logits.topk(k, dim=-1) probs = torch.full_like(logits, float("-inf")) probs.scatter_(2, ind, val) return probs def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None): confidence = log(probs) + temperature * gumbel_noise(probs, generator=generator) sorted_confidence = torch.sort(confidence, dim=-1).values cut_off = torch.gather(sorted_confidence, 1, mask_len.long()) masking = confidence < cut_off return masking def cosine_schedule(t): return torch.cos(t * math.pi * 0.5) def linear_schedule(t): mask_ratio = 1 - t mask_ratio = mask_ratio.clamp(min=1e-6, max=1.0) return mask_ratio def pow(t, method): exponent = float(method.replace("pow", "")) mask_ratio = 1.0 - t**exponent mask_ratio = mask_ratio.clamp(min=1e-6, max=1.0) return mask_ratio def sigmoid_schedule(t, start=-3, end=3, tau=1.0, clip_min=1e-6): for item in [t, start, end, tau]: item = torch.tensor(item) if not torch.is_tensor(item) else item # A gamma function based on sigmoid function. v_start = torch.sigmoid(torch.tensor(start / tau)) v_end = torch.sigmoid(torch.tensor(end / tau)) output = torch.sigmoid((t * (end - start) + start) / tau) output = (v_end - output) / (v_end - v_start) return torch.clip(output, clip_min, 1.0) def get_mask_chedule(method, **schedule_kwargs): if method == "cosine": return cosine_schedule elif method == "linear": return linear_schedule elif "pow" in method: return partial(pow, method=method) elif method == "sigmoid": return partial(sigmoid_schedule, **schedule_kwargs) else: raise ValueError("Unknown schedule method: {}".format(method)) def top_k_top_p_filtering( logits: torch.Tensor, top_k: int = 0, top_p: float = 1.0, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1, ) -> torch.Tensor: """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens_to_keep per batch example in the output From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ if top_k > 0: top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = filter_value return logits