import torch import torch.nn as nn from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig class CLIPVisionTower(nn.Module): def __init__(self, vision_tower): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.select_layer = -2 self.select_feature = "patch" self.load_model() self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) def load_model(self, device_map=None): if self.is_loaded: print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) return self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map) self.vision_tower.requires_grad_(False) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features[:, 1:] elif self.select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 class CLIPVisionTowerS2(CLIPVisionTower): def __init__(self, vision_tower, args, delay_load=False): super().__init__(vision_tower, args, delay_load) self.s2_scales = getattr(args, 's2_scales', '336,672,1008') self.s2_scales = list(map(int, self.s2_scales.split(','))) self.s2_scales.sort() self.s2_split_size = self.s2_scales[0] self.s2_image_size = self.s2_scales[-1] try: from s2wrapper import forward as multiscale_forward except ImportError: raise ImportError('Package s2wrapper not found! Please install by running: \npip install git+https://github.com/bfshi/scaling_on_scales.git') self.multiscale_forward = multiscale_forward # change resize/crop size in preprocessing to the largest image size in s2_scale if not delay_load or getattr(args, 'unfreeze_mm_vision_tower', False): self.image_processor.size['shortest_edge'] = self.s2_image_size self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size def load_model(self, device_map=None): if self.is_loaded: print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) return self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map) self.vision_tower.requires_grad_(False) self.image_processor.size['shortest_edge'] = self.s2_image_size self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size self.is_loaded = True @torch.no_grad() def forward_feature(self, images): image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_feature = self.multiscale_forward(self.forward_feature, image.unsqueeze(0), img_sizes=self.s2_scales, max_split_size=self.s2_split_size) image_features.append(image_feature) else: image_features = self.multiscale_forward(self.forward_feature, images, img_sizes=self.s2_scales, max_split_size=self.s2_split_size) return image_features @property def hidden_size(self): return self.config.hidden_size * len(self.s2_scales)