""" Modified from https://github.com/CompVis/taming-transformers/blob/master/taming/modules/diffusionmodules/model.py#L34 """ import math from typing import Tuple, Union import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange def nonlinearity(x): # swish return x * torch.sigmoid(x) def Normalize(in_channels): return torch.nn.GroupNorm( num_groups=32, num_channels=in_channels, eps=1e-6, affine=True ) class Upsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class DepthToSpaceUpsample(nn.Module): def __init__( self, in_channels, ): super().__init__() conv = nn.Conv2d(in_channels, in_channels * 4, 1) self.net = nn.Sequential( conv, nn.SiLU(), Rearrange("b (c p1 p2) h w -> b c (h p1) (w p2)", p1=2, p2=2), ) self.init_conv_(conv) def init_conv_(self, conv): o, i, h, w = conv.weight.shape conv_weight = torch.empty(o // 4, i, h, w) nn.init.kaiming_uniform_(conv_weight) conv_weight = repeat(conv_weight, "o ... -> (o 4) ...") conv.weight.data.copy_(conv_weight) nn.init.zeros_(conv.bias.data) def forward(self, x): out = self.net(x) return out class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=2, padding=0 ) def forward(self, x): if self.with_conv: pad = (0, 1, 0, 1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x def unpack_time(t, batch): _, c, w, h = t.size() out = torch.reshape(t, [batch, -1, c, w, h]) out = rearrange(out, "b t c h w -> b c t h w") return out def pack_time(t): out = rearrange(t, "b c t h w -> b t c h w") _, _, c, w, h = out.size() return torch.reshape(out, [-1, c, w, h]) class TimeDownsample2x(nn.Module): def __init__( self, dim, dim_out=None, kernel_size=3, ): super().__init__() if dim_out is None: dim_out = dim self.time_causal_padding = (kernel_size - 1, 0) self.conv = nn.Conv1d(dim, dim_out, kernel_size, stride=2) def forward(self, x): x = rearrange(x, "b c t h w -> b h w c t") b, h, w, c, t = x.size() x = torch.reshape(x, [-1, c, t]) x = F.pad(x, self.time_causal_padding) out = self.conv(x) out = torch.reshape(out, [b, h, w, c, t]) out = rearrange(out, "b h w c t -> b c t h w") out = rearrange(out, "b h w c t -> b c t h w") return out class TimeUpsample2x(nn.Module): def __init__(self, dim, dim_out=None): super().__init__() if dim_out is None: dim_out = dim conv = nn.Conv1d(dim, dim_out * 2, 1) self.net = nn.Sequential( nn.SiLU(), conv, Rearrange("b (c p) t -> b c (t p)", p=2) ) self.init_conv_(conv) def init_conv_(self, conv): o, i, t = conv.weight.shape conv_weight = torch.empty(o // 2, i, t) nn.init.kaiming_uniform_(conv_weight) conv_weight = repeat(conv_weight, "o ... -> (o 2) ...") conv.weight.data.copy_(conv_weight) nn.init.zeros_(conv.bias.data) def forward(self, x): x = rearrange(x, "b c t h w -> b h w c t") b, h, w, c, t = x.size() x = torch.reshape(x, [-1, c, t]) out = self.net(x) out = out[:, :, 1:].contiguous() out = torch.reshape(out, [b, h, w, c, t]) out = rearrange(out, "b h w c t -> b c t h w") return out class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.k = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.v = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.proj_out = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h * w) q = q.permute(0, 2, 1) # b,hw,c k = k.reshape(b, c, h * w) # b,c,hw w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h * w) w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b, c, h, w) h_ = self.proj_out(h_) return x + h_ class TimeAttention(AttnBlock): def forward(self, x, *args, **kwargs): x = rearrange(x, "b c t h w -> b h w t c") b, h, w, t, c = x.size() x = torch.reshape(x, (-1, t, c)) x = super().forward(x, *args, **kwargs) x = torch.reshape(x, [b, h, w, t, c]) return rearrange(x, "b h w t c -> b c t h w") class Residual(nn.Module): def __init__(self, fn: nn.Module): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x def cast_tuple(t, length=1): return t if isinstance(t, tuple) else ((t,) * length) class CausalConv3d(nn.Module): def __init__( self, chan_in, chan_out, kernel_size: Union[int, Tuple[int, int, int]], pad_mode="constant", **kwargs ): super().__init__() kernel_size = cast_tuple(kernel_size, 3) time_kernel_size, height_kernel_size, width_kernel_size = kernel_size dilation = kwargs.pop("dilation", 1) stride = kwargs.pop("stride", 1) self.pad_mode = pad_mode time_pad = dilation * (time_kernel_size - 1) + (1 - stride) height_pad = height_kernel_size // 2 width_pad = width_kernel_size // 2 self.time_pad = time_pad self.time_causal_padding = ( width_pad, width_pad, height_pad, height_pad, time_pad, 0, ) stride = (stride, 1, 1) dilation = (dilation, 1, 1) self.conv = nn.Conv3d( chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs ) def forward(self, x): pad_mode = self.pad_mode if self.time_pad < x.shape[2] else "constant" x = F.pad(x, self.time_causal_padding, mode=pad_mode) return self.conv(x) def ResnetBlockCausal3D( dim, kernel_size: Union[int, Tuple[int, int, int]], pad_mode: str = "constant" ): net = nn.Sequential( Normalize(dim), nn.SiLU(), CausalConv3d(dim, dim, kernel_size, pad_mode), Normalize(dim), nn.SiLU(), CausalConv3d(dim, dim, kernel_size, pad_mode), ) return Residual(net) class ResnetBlock(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512 ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) else: self.temb_proj = None self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1 ) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) else: self.nin_shortcut = torch.nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class DinoV2Model(nn.Module): def __init__( self, model_name, local_checkpoint_path="", renorm_input=False, old_input_mean=0.5, old_input_std=0.5, freeze_model=False, ): super().__init__() if local_checkpoint_path != "": self._model = torch.hub.load( local_checkpoint_path, model_name, source="local" ) else: self._model = torch.hub.load("facebookresearch/dinov2", model_name) self.register_buffer( "_dino_input_mean", torch.tensor([0.485, 0.456, 0.406]).float()[None, :, None, None], ) self.register_buffer( "_dino_input_std", torch.tensor([0.229, 0.224, 0.225]).float()[None, :, None, None], ) self._old_input_mean = old_input_mean self._old_input_std = old_input_std self._renorm_input = renorm_input if freeze_model: for param in self._model.parameters(): param.requires_grad = False def forward(self, inputs): batch, _, height, width = inputs.size() if self._renorm_input: inputs = inputs * self._old_input_mean + self._old_input_std inputs = (inputs - self._dino_input_mean) / self._dino_input_std # TODO(yanwan): If we want to remove this resizing, have to modify the decoder to support upscaling by a factor of 14. # Reduce both height and width to 7/8 of their original values while maintaining aspect ratio to fit dinov2 requirement. new_height = height // 8 * 7 new_width = width // 8 * 7 inputs = F.interpolate(inputs, (new_height, new_width), mode="bilinear") features = self._model.forward_features(inputs)["x_norm_patchtokens"] features = torch.transpose(features, 1, 2).contiguous() features = torch.reshape( features, (batch, -1, new_height // 14, new_width // 14) ) return features