import spaces import gradio as gr from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM, TrainerCallback from datasets import load_dataset import traceback from huggingface_hub import login from peft import get_peft_model, LoraConfig class LoggingCallback(TrainerCallback): def on_step_end(self, args, state, control, kwargs): # Log the learning rate current_lr = state.optimizer.param_groups[0]['lr'] print(f"Current Learning Rate: {current_lr}") def on_epoch_end(self, args, state, control, kwargs): # Log the error rate (assuming you have a metric to calculate it) # Here we assume you have a way to get the validation loss if state.best_metric is not None: error_rate = 1 - state.best_metric # Assuming best_metric is accuracy print(f"Current Error Rate: {error_rate:.4f}") @spaces.GPU def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad): try: login(api_key.strip()) lora_config = LoraConfig( r=16, # Rank of the low-rank adaptation lora_alpha=32, # Scaling factor lora_dropout=0.1, # Dropout for LoRA layers bias="none" # Bias handling ) # Load the dataset dataset = load_dataset(dataset_name.strip()) # Load the model and tokenizer model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2) model = get_peft_model(model, lora_config) tokenizer = AutoTokenizer.from_pretrained(model_name) # Tokenize the dataset def tokenize_function(examples): max_length = 256 return tokenizer(examples['text'], max_length=max_length, truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) # Set training arguments training_args = TrainingArguments( output_dir='./results', eval_strategy="epoch", save_strategy='epoch', learning_rate=lr*0.00001, per_device_train_batch_size=int(batch_size), per_device_eval_batch_size=int(batch_size), num_train_epochs=int(num_epochs), weight_decay=0.01, gradient_accumulation_steps=grad*0.1, load_best_model_at_end=True, metric_for_best_model="accuracy", greater_is_better=True, logging_dir='./logs', logging_steps=10, #push_to_hub=True, hub_model_id=hub_id.strip(), fp16=True, lr_scheduler_type='cosine', ) # Create Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets['train'], eval_dataset=tokenized_datasets['test'], test_dataset=tokenized_datasets['validation'], callbacks=[LoggingCallback()], ) # Fine-tune the model trainer.train() trainer.push_to_hub(commit_message="Training complete!") except Exception as e: return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}" return 'DONE!'#model ''' # Define Gradio interface def predict(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) outputs = model(inputs) predictions = outputs.logits.argmax(dim=-1) return "Positive" if predictions.item() == 1 else "Negative" ''' # Create Gradio interface try: iface = gr.Interface( fn=fine_tune_model, inputs=[ gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"), gr.Textbox(label="Dataset Name (e.g., 'imdb')"), gr.Textbox(label="HF hub to push to after training"), gr.Textbox(label="HF API token"), gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs"), gr.Slider(minimum=1, maximum=16, value=4, label="Batch Size"), gr.Slider(minimum=1, maximum=1000, value=50, label="Learning Rate (e-5)"), gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation (e-1)"), ], outputs="text", title="Fine-Tune Hugging Face Model", description="This interface allows you to fine-tune a Hugging Face model on a specified dataset." ) # Launch the interface iface.launch() except Exception as e: print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")