""" from https://github.com/jaywalnut310/glow-tts """ import numpy as np import torch def sequence_mask(length, max_length=None): if max_length is None: max_length = length.max() x = torch.arange(int(max_length), dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) def fix_len_compatibility(length, num_downsamplings_in_unet=2): while True: if length % (2**num_downsamplings_in_unet) == 0: return length length += 1 def convert_pad_shape(pad_shape): l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def generate_path(duration, mask): device = duration.device b, t_x, t_y = mask.shape cum_duration = torch.cumsum(duration, 1) path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device) cum_duration_flat = cum_duration.view(b * t_x) path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) path = path.view(b, t_x, t_y) path = path - torch.nn.functional.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] path = path * mask return path def duration_loss(logw, logw_, lengths): loss = torch.sum((logw - logw_)**2) / torch.sum(lengths) return loss def normalize(data, mu, std): if not isinstance(mu, float): if isinstance(mu, list): mu = torch.tensor(mu, dtype=data.dtype, device=data.device) elif isinstance(mu, torch.Tensor): mu = mu.to(data.device) elif isinstance(mu, np.ndarray): mu = torch.from_numpy(mu).to(data.device) mu = mu.unsqueeze(-1) if not isinstance(std, float): if isinstance(std, list): std = torch.tensor(std, dtype=data.dtype, device=data.device) elif isinstance(std, torch.Tensor): std = std.to(data.device) elif isinstance(std, np.ndarray): std = torch.from_numpy(std).to(data.device) std = std.unsqueeze(-1) return (data - mu) / std def denormalize(data, mu, std): if not isinstance(mu, float): if isinstance(mu, list): mu = torch.tensor(mu, dtype=data.dtype, device=data.device) elif isinstance(mu, torch.Tensor): mu = mu.to(data.device) elif isinstance(mu, np.ndarray): mu = torch.from_numpy(mu).to(data.device) mu = mu.unsqueeze(-1) if not isinstance(std, float): if isinstance(std, list): std = torch.tensor(std, dtype=data.dtype, device=data.device) elif isinstance(std, torch.Tensor): std = std.to(data.device) elif isinstance(std, np.ndarray): std = torch.from_numpy(std).to(data.device) std = std.unsqueeze(-1) return data * std + mu