# This file is modified from https://github.com/haotian-liu/LLaVA/ # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import shutil from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig import torch from llava.model import * from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs): kwargs = {"device_map": device_map, **kwargs} if device != "cuda": kwargs['device_map'] = {"": device} if load_8bit: kwargs['load_in_8bit'] = True elif load_4bit: kwargs['load_in_4bit'] = True kwargs['quantization_config'] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ) else: kwargs['torch_dtype'] = torch.float16 if use_flash_attn: kwargs['attn_implementation'] = 'flash_attention_2' tokenizer = AutoTokenizer.from_pretrained(model_path) model = LlavaQwenSlowFastForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) if mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) model.resize_token_embeddings(len(tokenizer)) vision_tower = model.get_vision_tower() if not vision_tower.is_loaded: vision_tower.load_model(device_map=device_map) if device_map != 'auto': vision_tower.to(device=device_map, dtype=torch.float16) image_processor = vision_tower.image_processor if hasattr(model.config, "max_sequence_length"): context_len = model.config.max_sequence_length else: context_len = 2048 return tokenizer, model, image_processor, context_len