# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from transformers import AutoConfig, AutoModelForCausalLM, \ Phi3Config, Phi3Model, Phi3ForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.generation.utils import GenerateOutput from transformers.utils import logging import torch.distributed as dist try: import wandb except: pass import os logger = logging.get_logger(__name__) from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM from .base_lm import BaseCausalLM class LlavaPhi3Config(Phi3Config): model_type = "llava_phi3" class LlavaPhi3Model(LlavaMetaModel, Phi3Model): config_class = LlavaPhi3Config def __init__(self, config: Phi3Config): super(LlavaPhi3Model, self).__init__(config) class LlavaPhi3ForCausalLM(Phi3ForCausalLM, LlavaMetaForCausalLM, BaseCausalLM): config_class = LlavaPhi3Config def __init__(self, config): super(Phi3ForCausalLM, self).__init__(config) self.model = LlavaPhi3Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) try: if dist.get_rank() == 0: wandb.init(project=os.environ['WANDB_PROJECT'], name=f"{os.environ['WANDB_NAME']}") except: pass # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, image_sizes: Optional[List[List[int]]] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes ) return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, images: Optional[torch.Tensor] = None, image_sizes: Optional[torch.Tensor] = None, **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: position_ids = kwargs.pop("position_ids", None) attention_mask = kwargs.pop("attention_mask", None) if "inputs_embeds" in kwargs: raise NotImplementedError("`inputs_embeds` is not supported") if images is not None: ( inputs, position_ids, attention_mask, _, inputs_embeds, _ ) = self.prepare_inputs_labels_for_multimodal( inputs, position_ids, attention_mask, None, None, images, image_sizes=image_sizes ) else: inputs_embeds = self.get_model().embed_tokens(inputs) return super().generate( position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) image_sizes = kwargs.pop("image_sizes", None) inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) if images is not None: inputs['images'] = images if image_sizes is not None: inputs['image_sizes'] = image_sizes return inputs AutoConfig.register("llava_phi3", LlavaPhi3Config) AutoModelForCausalLM.register(LlavaPhi3Config, LlavaPhi3ForCausalLM)