# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np from numpy.lib.type_check import imag import torch import torch.nn as nn from torch_utils import misc from torch_utils import persistence from torch_utils.ops import conv2d_resample from torch_utils.ops import upfirdn2d from torch_utils.ops import bias_act from torch_utils.ops import fma from icecream import ic import torch.nn.functional as F from training.ffc import FFCResnetBlock, ConcatTupleLayer import matplotlib.pyplot as plt import PIL #---------------------------------------------------------------------------- @misc.profiled_function def normalize_2nd_moment(x, dim=1, eps=1e-8): return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt() def save_image_grid(feats, fname, gridsize): gw, gh = gridsize idx = gw * gh max_num = torch.max(feats[:idx]).item() min_num = torch.min(feats[:idx]).item() feats = feats[:idx].cpu() * 255 / (max_num - min_num) feats = np.asarray(feats, dtype=np.float32) feats = np.rint(feats).clip(0, 255).astype(np.uint8) C, H, W = feats.shape feats = feats.reshape(gh, gw, 1, H, W) feats = feats.transpose(0, 3, 1, 4, 2) feats = feats.reshape(gh * H, gw * W, 1) feats = np.stack([feats]*3, axis=2).squeeze() * 10 feats = np.rint(feats).clip(0, 255).astype(np.uint8) from icecream import ic ic(feats.shape) feats = PIL.Image.fromarray(feats) feats.save(fname + '.png') #---------------------------------------------------------------------------- @misc.profiled_function def modulated_conv2d( x, # Input tensor of shape [batch_size, in_channels, in_height, in_width]. weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width]. styles, # Modulation coefficients of shape [batch_size, in_channels]. noise = None, # Optional noise tensor to add to the output activations. up = 1, # Integer upsampling factor. down = 1, # Integer downsampling factor. padding = 0, # Padding with respect to the upsampled image. resample_filter = None, # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter(). demodulate = True, # Apply weight demodulation? flip_weight = True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d). fused_modconv = True, # Perform modulation, convolution, and demodulation as a single fused operation? ): batch_size = x.shape[0] out_channels, in_channels, kh, kw = weight.shape misc.assert_shape(weight, [out_channels, in_channels, kh, kw]) # [OIkk] misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW] misc.assert_shape(styles, [batch_size, in_channels]) # [NI] # Pre-normalize inputs to avoid FP16 overflow. if x.dtype == torch.float16 and demodulate: weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm(float('inf'), dim=[1,2,3], keepdim=True)) # max_Ikk styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I # Calculate per-sample weights and demodulation coefficients. w = None dcoefs = None if demodulate or fused_modconv: w = weight.unsqueeze(0) # [NOIkk] w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk] if demodulate: dcoefs = (w.square().sum(dim=[2,3,4]) + 1e-8).rsqrt() # [NO] if demodulate and fused_modconv: w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk] # Execute by scaling the activations before and after the convolution. if not fused_modconv: x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1) x = conv2d_resample.conv2d_resample(x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, flip_weight=flip_weight) if demodulate and noise is not None: x = fma.fma(x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype)) elif demodulate: x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1) elif noise is not None: x = x.add_(noise.to(x.dtype)) return x # Execute as one fused op using grouped convolution. with misc.suppress_tracer_warnings(): # this value will be treated as a constant batch_size = int(batch_size) misc.assert_shape(x, [batch_size, in_channels, None, None]) x = x.reshape(1, -1, *x.shape[2:]) w = w.reshape(-1, in_channels, kh, kw) x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, groups=batch_size, flip_weight=flip_weight) x = x.reshape(batch_size, -1, *x.shape[2:]) if noise is not None: x = x.add_(noise) return x #---------------------------------------------------------------------------- @persistence.persistent_class class FullyConnectedLayer(torch.nn.Module): def __init__(self, in_features, # Number of input features. out_features, # Number of output features. bias = True, # Apply additive bias before the activation function? activation = 'linear', # Activation function: 'relu', 'lrelu', etc. lr_multiplier = 1, # Learning rate multiplier. bias_init = 0, # Initial value for the additive bias. ): super().__init__() self.activation = activation self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier) self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None self.weight_gain = lr_multiplier / np.sqrt(in_features) self.bias_gain = lr_multiplier def forward(self, x): w = self.weight.to(x.dtype) * self.weight_gain b = self.bias if b is not None: b = b.to(x.dtype) if self.bias_gain != 1: b = b * self.bias_gain if self.activation == 'linear' and b is not None: x = torch.addmm(b.unsqueeze(0), x, w.t()) else: x = x.matmul(w.t()) x = bias_act.bias_act(x, b, act=self.activation) return x #---------------------------------------------------------------------------- @persistence.persistent_class class Conv2dLayer(torch.nn.Module): def __init__(self, in_channels, # Number of input channels. out_channels, # Number of output channels. kernel_size, # Width and height of the convolution kernel. bias = True, # Apply additive bias before the activation function? activation = 'linear', # Activation function: 'relu', 'lrelu', etc. up = 1, # Integer upsampling factor. down = 1, # Integer downsampling factor. resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. conv_clamp = None, # Clamp the output to +-X, None = disable clamping. channels_last = False, # Expect the input to have memory_format=channels_last? trainable = True, # Update the weights of this layer during training? ): super().__init__() self.activation = activation self.up = up self.down = down self.conv_clamp = conv_clamp self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.padding = kernel_size // 2 self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) self.act_gain = bias_act.activation_funcs[activation].def_gain memory_format = torch.channels_last if channels_last else torch.contiguous_format weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format) bias = torch.zeros([out_channels]) if bias else None if trainable: self.weight = torch.nn.Parameter(weight) self.bias = torch.nn.Parameter(bias) if bias is not None else None else: self.register_buffer('weight', weight) if bias is not None: self.register_buffer('bias', bias) else: self.bias = None def forward(self, x, gain=1): w = self.weight * self.weight_gain b = self.bias.to(x.dtype) if self.bias is not None else None flip_weight = (self.up == 1) # slightly faster x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=self.resample_filter, up=self.up, down=self.down, padding=self.padding, flip_weight=flip_weight) act_gain = self.act_gain * gain act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None x = bias_act.bias_act(x, b, act=self.activation, gain=act_gain, clamp=act_clamp) return x #---------------------------------------------------------------------------- @persistence.persistent_class class FFCBlock(torch.nn.Module): def __init__(self, dim, # Number of output/input channels. kernel_size, # Width and height of the convolution kernel. padding, ratio_gin=0.75, ratio_gout=0.75, activation = 'linear', # Activation function: 'relu', 'lrelu', etc. ): super().__init__() if activation == 'linear': self.activation = nn.Identity else: self.activation = nn.ReLU self.padding = padding self.kernel_size = kernel_size self.ffc_block = FFCResnetBlock(dim=dim, padding_type='reflect', norm_layer=nn.SyncBatchNorm, activation_layer=self.activation, dilation=1, ratio_gin=ratio_gin, ratio_gout=ratio_gout) self.concat_layer = ConcatTupleLayer() def forward(self, gen_ft, mask, fname=None): x = gen_ft.float() # x = mask*enc_ft + (1-mask)*gen_ft x_l, x_g = x[:, :-self.ffc_block.conv1.ffc.global_in_num], x[:, -self.ffc_block.conv1.ffc.global_in_num:] id_l, id_g = x_l, x_g x_l, x_g = self.ffc_block((x_l, x_g), fname=fname) x_l, x_g = id_l + x_l, id_g + x_g x = self.concat_layer((x_l, x_g)) return x + gen_ft.float() #---------------------------------------------------------------------------- @persistence.persistent_class class EncoderEpilogue(torch.nn.Module): def __init__(self, in_channels, # Number of input channels. cmap_dim, # Dimensionality of mapped conditioning label, 0 = no label. z_dim, # Output Latent (Z) dimensionality. resolution, # Resolution of this block. img_channels, # Number of input color channels. architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'. mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, None = entire minibatch. mbstd_num_channels = 1, # Number of features for the minibatch standard deviation layer, 0 = disable. activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. ): assert architecture in ['orig', 'skip', 'resnet'] super().__init__() self.in_channels = in_channels self.cmap_dim = cmap_dim self.resolution = resolution self.img_channels = img_channels self.architecture = architecture if architecture == 'skip': self.fromrgb = Conv2dLayer(self.img_channels, in_channels, kernel_size=1, activation=activation) self.mbstd = MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels) if mbstd_num_channels > 0 else None self.conv = Conv2dLayer(in_channels + mbstd_num_channels, in_channels, kernel_size=3, activation=activation, conv_clamp=conv_clamp) self.fc = FullyConnectedLayer(in_channels * (resolution ** 2), z_dim, activation=activation) # self.out = FullyConnectedLayer(in_channels, z_dim) self.dropout = torch.nn.Dropout(p=0.5) def forward(self, x, cmap, force_fp32=False): misc.assert_shape(x, [None, self.in_channels, self.resolution, self.resolution]) # [NCHW] _ = force_fp32 # unused dtype = torch.float32 memory_format = torch.contiguous_format # FromRGB. x = x.to(dtype=dtype, memory_format=memory_format) # Main layers. if self.mbstd is not None: x = self.mbstd(x) const_e = self.conv(x) x = self.fc(const_e.flatten(1)) # x = self.out(x) x = self.dropout(x) # Conditioning. if self.cmap_dim > 0: misc.assert_shape(cmap, [None, self.cmap_dim]) x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) assert x.dtype == dtype return x, const_e #---------------------------------------------------------------------------- @persistence.persistent_class class EncoderBlock(torch.nn.Module): def __init__(self, in_channels, # Number of input channels, 0 = first block. tmp_channels, # Number of intermediate channels. out_channels, # Number of output channels. resolution, # Resolution of this block. img_channels, # Number of input color channels. first_layer_idx, # Index of the first layer. architecture = 'skip', # Architecture: 'orig', 'skip', 'resnet'. activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. use_fp16 = False, # Use FP16 for this block? fp16_channels_last = False, # Use channels-last memory format with FP16? freeze_layers = 0, # Freeze-D: Number of layers to freeze. ): assert in_channels in [0, tmp_channels] assert architecture in ['orig', 'skip', 'resnet'] super().__init__() self.in_channels = in_channels self.resolution = resolution self.img_channels = img_channels + 1 self.first_layer_idx = first_layer_idx self.architecture = architecture self.use_fp16 = use_fp16 self.channels_last = (use_fp16 and fp16_channels_last) self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.num_layers = 0 def trainable_gen(): while True: layer_idx = self.first_layer_idx + self.num_layers trainable = (layer_idx >= freeze_layers) self.num_layers += 1 yield trainable trainable_iter = trainable_gen() if in_channels == 0: self.fromrgb = Conv2dLayer(self.img_channels, tmp_channels, kernel_size=1, activation=activation, trainable=next(trainable_iter), conv_clamp=conv_clamp, channels_last=self.channels_last) self.conv0 = Conv2dLayer(tmp_channels, tmp_channels, kernel_size=3, activation=activation, trainable=next(trainable_iter), conv_clamp=conv_clamp, channels_last=self.channels_last) self.conv1 = Conv2dLayer(tmp_channels, out_channels, kernel_size=3, activation=activation, down=2, trainable=next(trainable_iter), resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last) if architecture == 'resnet': self.skip = Conv2dLayer(tmp_channels, out_channels, kernel_size=1, bias=False, down=2, trainable=next(trainable_iter), resample_filter=resample_filter, channels_last=self.channels_last) def forward(self, x, img, force_fp32=False): dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format # Input. if x is not None: misc.assert_shape(x, [None, self.in_channels, self.resolution, self.resolution]) x = x.to(dtype=dtype, memory_format=memory_format) # FromRGB. if self.in_channels == 0: misc.assert_shape(img, [None, self.img_channels, self.resolution, self.resolution]) img = img.to(dtype=dtype, memory_format=memory_format) y = self.fromrgb(img) x = x + y if x is not None else y img = upfirdn2d.downsample2d(img, self.resample_filter) if self.architecture == 'skip' else None # Main layers. if self.architecture == 'resnet': y = self.skip(x, gain=np.sqrt(0.5)) x = self.conv0(x) feat = x.clone() x = self.conv1(x, gain=np.sqrt(0.5)) x = y.add_(x) else: x = self.conv0(x) feat = x.clone() x = self.conv1(x) assert x.dtype == dtype return x, img, feat #---------------------------------------------------------------------------- @persistence.persistent_class class SynthesisLayer(torch.nn.Module): def __init__(self, in_channels, # Number of input channels. out_channels, # Number of output channels. w_dim, # Intermediate latent (W) dimensionality. resolution, # Resolution of this layer. kernel_size = 3, # Convolution kernel size. up = 1, # Integer upsampling factor. use_noise = True, # Enable noise input? activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. channels_last = False, # Use channels_last format for the weights? ): super().__init__() self.resolution = resolution self.up = up self.use_noise = use_noise self.activation = activation self.conv_clamp = conv_clamp self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.padding = kernel_size // 2 self.act_gain = bias_act.activation_funcs[activation].def_gain self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1) memory_format = torch.channels_last if channels_last else torch.contiguous_format self.weight = torch.nn.Parameter(torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format)) if use_noise: self.register_buffer('noise_const', torch.randn([resolution, resolution])) self.noise_strength = torch.nn.Parameter(torch.zeros([])) self.bias = torch.nn.Parameter(torch.zeros([out_channels])) def forward(self, x, w, noise_mode='random', fused_modconv=True, gain=1): assert noise_mode in ['random', 'const', 'none'] in_resolution = self.resolution // self.up misc.assert_shape(x, [None, self.weight.shape[1], in_resolution, in_resolution]) styles = self.affine(w) noise = None if self.use_noise and noise_mode == 'random': noise = torch.randn([x.shape[0], 1, self.resolution, self.resolution], device=x.device) * self.noise_strength if self.use_noise and noise_mode == 'const': noise = self.noise_const * self.noise_strength flip_weight = (self.up == 1) # slightly faster x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up, padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight, fused_modconv=fused_modconv) act_gain = self.act_gain * gain act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None x = F.leaky_relu(x, negative_slope=0.2, inplace=False) if act_gain != 1: x = x * act_gain if act_clamp is not None: x = x.clamp(-act_clamp, act_clamp) # x = bias_act.bias_act(x.clone(), self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp) return x #---------------------------------------------------------------------------- @persistence.persistent_class class FFCSkipLayer(torch.nn.Module): def __init__(self, dim, # Number of input/output channels. kernel_size = 3, # Convolution kernel size. ratio_gin=0.75, ratio_gout=0.75, ): super().__init__() self.padding = kernel_size // 2 self.ffc_act = FFCBlock(dim=dim, kernel_size=kernel_size, activation=nn.ReLU, padding=self.padding, ratio_gin=ratio_gin, ratio_gout=ratio_gout) def forward(self, gen_ft, mask, fname=None): x = self.ffc_act(gen_ft, mask, fname=fname) return x #---------------------------------------------------------------------------- @persistence.persistent_class class ToRGBLayer(torch.nn.Module): def __init__(self, in_channels, out_channels, w_dim, kernel_size=1, conv_clamp=None, channels_last=False): super().__init__() self.conv_clamp = conv_clamp self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1) memory_format = torch.channels_last if channels_last else torch.contiguous_format self.weight = torch.nn.Parameter(torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format)) self.bias = torch.nn.Parameter(torch.zeros([out_channels])) self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) def forward(self, x, w, fused_modconv=True): styles = self.affine(w) * self.weight_gain x = modulated_conv2d(x=x, weight=self.weight, styles=styles, demodulate=False, fused_modconv=fused_modconv) x = bias_act.bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp) return x #---------------------------------------------------------------------------- @persistence.persistent_class class SynthesisBlock(torch.nn.Module): def __init__(self, in_channels, # Number of input channels, 0 = first block. out_channels, # Number of output channels. w_dim, # Intermediate latent (W) dimensionality. resolution, # Resolution of this block. img_channels, # Number of output color channels. is_last, # Is this the last block? architecture = 'skip', # Architecture: 'orig', 'skip', 'resnet'. resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. use_fp16 = False, # Use FP16 for this block? fp16_channels_last = False, # Use channels-last memory format with FP16? **layer_kwargs, # Arguments for SynthesisLayer. ): assert architecture in ['orig', 'skip', 'resnet'] super().__init__() self.in_channels = in_channels self.w_dim = w_dim self.resolution = resolution self.img_channels = img_channels self.is_last = is_last self.architecture = architecture self.use_fp16 = use_fp16 self.channels_last = (use_fp16 and fp16_channels_last) self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.num_conv = 0 self.num_torgb = 0 self.res_ffc = {4:0, 8: 0, 16: 0, 32: 1, 64: 1, 128: 1, 256: 1, 512: 1} if in_channels != 0 and resolution >= 8: self.ffc_skip = nn.ModuleList() for _ in range(self.res_ffc[resolution]): self.ffc_skip.append(FFCSkipLayer(dim=out_channels)) if in_channels == 0: self.const = torch.nn.Parameter(torch.randn([out_channels, resolution, resolution])) if in_channels != 0: self.conv0 = SynthesisLayer(in_channels, out_channels, w_dim=w_dim*3, resolution=resolution, up=2, resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs) self.num_conv += 1 self.conv1 = SynthesisLayer(out_channels, out_channels, w_dim=w_dim*3, resolution=resolution, conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs) self.num_conv += 1 if is_last or architecture == 'skip': self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim*3, conv_clamp=conv_clamp, channels_last=self.channels_last) self.num_torgb += 1 if in_channels != 0 and architecture == 'resnet': self.skip = Conv2dLayer(in_channels, out_channels, kernel_size=1, bias=False, up=2, resample_filter=resample_filter, channels_last=self.channels_last) def forward(self, x, mask, feats, img, ws, fname=None, force_fp32=False, fused_modconv=None, **layer_kwargs): # misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) # w_iter = iter(ws.unbind(dim=1)) dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format if fused_modconv is None: with misc.suppress_tracer_warnings(): # this value will be treated as a constant fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) # # Input. # if self.in_channels == 0: # ic(self.const.shape) # x = self.const.to(dtype=dtype, memory_format=memory_format) # x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) # ic(x.shape) # else: # misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) # x = x.to(dtype=dtype, memory_format=memory_format) # ic(x.shape, 'ELSE') x = x.to(dtype=dtype, memory_format=memory_format) x_skip = feats[self.resolution].clone().to(dtype=dtype, memory_format=memory_format) # Main layers. if self.in_channels == 0: x = self.conv1(x, ws[1], fused_modconv=fused_modconv, **layer_kwargs) elif self.architecture == 'resnet': y = self.skip(x, gain=np.sqrt(0.5)) x = self.conv0(x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs) if len(self.ffc_skip) > 0: mask = F.interpolate(mask, size=x_skip.shape[2:],) z = x + x_skip for fres in self.ffc_skip: z = fres(z, mask) x = x + z else: x = x + x_skip x = self.conv1(x, ws[1].clone(), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) x = y.add_(x) else: x = self.conv0(x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs) if len(self.ffc_skip) > 0: # for i in range(x.shape[0]): # c, h, w = x[i].shape # gh = 3 # gw = 3 # save_image_grid(x[i].detach(), f'vis/{fname}_pre_{h}', (gh, gw)) mask = F.interpolate(mask, size=x_skip.shape[2:],) z = x + x_skip for fres in self.ffc_skip: z = fres(z, mask) # for i in range(z.shape[0]): # c, h, w = z[i].shape # gh = 3 # gw = 3 # save_image_grid(z[i].detach(), f'vis/{fname}_ffc_{h}', (gh, gw)) x = x + z # for i in range(x.shape[0]): # c, h, w = x[i].shape # gh = 3 # gw = 3 # save_image_grid(x[i].detach(), f'vis/{fname}_post_{h}', (gh, gw)) else: x = x + x_skip x = self.conv1(x, ws[1].clone(), fused_modconv=fused_modconv, **layer_kwargs) # ToRGB. if img is not None: misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) img = upfirdn2d.upsample2d(img, self.resample_filter) if self.is_last or self.architecture == 'skip': y = self.torgb(x, ws[2].clone(), fused_modconv=fused_modconv) y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) img = img.add_(y) if img is not None else y x = x.to(dtype=dtype) assert x.dtype == dtype assert img is None or img.dtype == torch.float32 return x, img #---------------------------------------------------------------------------- @persistence.persistent_class class SynthesisForeword(torch.nn.Module): def __init__(self, z_dim, # Output Latent (Z) dimensionality. resolution, # Resolution of this block. in_channels, img_channels, # Number of input color channels. architecture = 'skip', # Architecture: 'orig', 'skip', 'resnet'. activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. ): super().__init__() self.in_channels = in_channels self.z_dim = z_dim self.resolution = resolution self.img_channels = img_channels self.architecture = architecture self.fc = FullyConnectedLayer(self.z_dim, (self.z_dim // 2) * 4 * 4, activation=activation) self.conv = SynthesisLayer(self.in_channels, self.in_channels, w_dim=(z_dim // 2) * 3, resolution=4) if architecture == 'skip': self.torgb = ToRGBLayer(self.in_channels, self.img_channels, kernel_size=1, w_dim = (z_dim // 2) * 3) def forward(self, x, ws, feats, img, force_fp32=False): misc.assert_shape(x, [None, self.z_dim]) # [NC] _ = force_fp32 # unused dtype = torch.float32 memory_format = torch.contiguous_format x_global = x.clone() # ToRGB. x = self.fc(x) x = x.view(-1, self.z_dim // 2, 4, 4) x = x.to(dtype=dtype, memory_format=memory_format) # Main layers. x_skip = feats[4].clone() x = x + x_skip mod_vector = [] mod_vector.append(ws[:, 0]) mod_vector.append(x_global.clone()) mod_vector = torch.cat(mod_vector, dim = 1) x = self.conv(x, mod_vector) mod_vector = [] mod_vector.append(ws[:, 2*2-3]) mod_vector.append(x_global.clone()) mod_vector = torch.cat(mod_vector, dim = 1) if self.architecture == 'skip': img = self.torgb(x, mod_vector) img = img.to(dtype=torch.float32, memory_format=torch.contiguous_format) assert x.dtype == dtype return x, img #---------------------------------------------------------------------------- @persistence.persistent_class class DiscriminatorBlock(torch.nn.Module): def __init__(self, in_channels, # Number of input channels, 0 = first block. tmp_channels, # Number of intermediate channels. out_channels, # Number of output channels. resolution, # Resolution of this block. img_channels, # Number of input color channels. first_layer_idx, # Index of the first layer. architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'. activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. use_fp16 = False, # Use FP16 for this block? fp16_channels_last = False, # Use channels-last memory format with FP16? freeze_layers = 0, # Freeze-D: Number of layers to freeze. ): assert in_channels in [0, tmp_channels] assert architecture in ['orig', 'skip', 'resnet'] super().__init__() self.in_channels = in_channels self.resolution = resolution self.img_channels = img_channels + 1 self.first_layer_idx = first_layer_idx self.architecture = architecture self.use_fp16 = use_fp16 self.channels_last = (use_fp16 and fp16_channels_last) self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.num_layers = 0 def trainable_gen(): while True: layer_idx = self.first_layer_idx + self.num_layers trainable = (layer_idx >= freeze_layers) self.num_layers += 1 yield trainable trainable_iter = trainable_gen() if in_channels == 0 or architecture == 'skip': self.fromrgb = Conv2dLayer(self.img_channels, tmp_channels, kernel_size=1, activation=activation, trainable=next(trainable_iter), conv_clamp=conv_clamp, channels_last=self.channels_last) self.conv0 = Conv2dLayer(tmp_channels, tmp_channels, kernel_size=3, activation=activation, trainable=next(trainable_iter), conv_clamp=conv_clamp, channels_last=self.channels_last) self.conv1 = Conv2dLayer(tmp_channels, out_channels, kernel_size=3, activation=activation, down=2, trainable=next(trainable_iter), resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last) if architecture == 'resnet': self.skip = Conv2dLayer(tmp_channels, out_channels, kernel_size=1, bias=False, down=2, trainable=next(trainable_iter), resample_filter=resample_filter, channels_last=self.channels_last) def forward(self, x, img, force_fp32=False): dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format # Input. if x is not None: misc.assert_shape(x, [None, self.in_channels, self.resolution, self.resolution]) x = x.to(dtype=dtype, memory_format=memory_format) # FromRGB. if self.in_channels == 0 or self.architecture == 'skip': misc.assert_shape(img, [None, self.img_channels, self.resolution, self.resolution]) img = img.to(dtype=dtype, memory_format=memory_format) y = self.fromrgb(img) x = x + y if x is not None else y img = upfirdn2d.downsample2d(img, self.resample_filter) if self.architecture == 'skip' else None # Main layers. if self.architecture == 'resnet': y = self.skip(x, gain=np.sqrt(0.5)) x = self.conv0(x) x = self.conv1(x, gain=np.sqrt(0.5)) x = y.add_(x) else: x = self.conv0(x) x = self.conv1(x) assert x.dtype == dtype return x, img #---------------------------------------------------------------------------- @persistence.persistent_class class MinibatchStdLayer(torch.nn.Module): def __init__(self, group_size, num_channels=1): super().__init__() self.group_size = group_size self.num_channels = num_channels def forward(self, x): N, C, H, W = x.shape with misc.suppress_tracer_warnings(): # as_tensor results are registered as constants G = torch.min(torch.as_tensor(self.group_size), torch.as_tensor(N)) if self.group_size is not None else N F = self.num_channels c = C // F y = x.reshape(G, -1, F, c, H, W) # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c. y = y - y.mean(dim=0) # [GnFcHW] Subtract mean over group. y = y.square().mean(dim=0) # [nFcHW] Calc variance over group. y = (y + 1e-8).sqrt() # [nFcHW] Calc stddev over group. y = y.mean(dim=[2,3,4]) # [nF] Take average over channels and pixels. y = y.reshape(-1, F, 1, 1) # [nF11] Add missing dimensions. y = y.repeat(G, 1, H, W) # [NFHW] Replicate over group and pixels. x = torch.cat([x, y], dim=1) # [NCHW] Append to input as new channels. return x #---------------------------------------------------------------------------- @persistence.persistent_class class DiscriminatorEpilogue(torch.nn.Module): def __init__(self, in_channels, # Number of input channels. cmap_dim, # Dimensionality of mapped conditioning label, 0 = no label. resolution, # Resolution of this block. img_channels, # Number of input color channels. architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'. mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, None = entire minibatch. mbstd_num_channels = 1, # Number of features for the minibatch standard deviation layer, 0 = disable. activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. ): assert architecture in ['orig', 'skip', 'resnet'] super().__init__() self.in_channels = in_channels self.cmap_dim = cmap_dim self.resolution = resolution self.img_channels = img_channels self.architecture = architecture if architecture == 'skip': self.fromrgb = Conv2dLayer(img_channels, in_channels, kernel_size=1, activation=activation) self.mbstd = MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels) if mbstd_num_channels > 0 else None self.conv = Conv2dLayer(in_channels + mbstd_num_channels, in_channels, kernel_size=3, activation=activation, conv_clamp=conv_clamp) self.fc = FullyConnectedLayer(in_channels * (resolution ** 2), in_channels, activation=activation) self.out = FullyConnectedLayer(in_channels, 1 if cmap_dim == 0 else cmap_dim) def forward(self, x, img, cmap, force_fp32=False): misc.assert_shape(x, [None, self.in_channels, self.resolution, self.resolution]) # [NCHW] _ = force_fp32 # unused dtype = torch.float32 memory_format = torch.contiguous_format # FromRGB. x = x.to(dtype=dtype, memory_format=memory_format) if self.architecture == 'skip': misc.assert_shape(img, [None, self.img_channels, self.resolution, self.resolution]) img = img.to(dtype=dtype, memory_format=memory_format) x = x + self.fromrgb(img) # Main layers. if self.mbstd is not None: x = self.mbstd(x) x = self.conv(x) x = self.fc(x.flatten(1)) x = self.out(x) # Conditioning. if self.cmap_dim > 0: misc.assert_shape(cmap, [None, self.cmap_dim]) x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) assert x.dtype == dtype return x #----------------------------------------------------------------------------