import subprocess subprocess.run('sh setup.sh', shell=True) print("Installed the dependencies!") from typing import Tuple import dnnlib from PIL import Image import numpy as np import torch import legacy import cv2 from streamlit_drawable_canvas import st_canvas import streamlit as st device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class_idx = None truncation_psi = 0.1 title = "FcF-Inpainting" description = "
\
[Note: The Inpainted Image display may take up to a minute depending on the Queue. The image and mask are resized to 512x512 before inpainting. The Run FcF-Inpainting button will automatically appear after you draw a mask.] To use FcF-Inpainting:
\
(1) Upload an Image or select a sample image on the left.
\
(2) Adjust the brush stroke width and draw the mask on the image. You may also change the drawing tool on the sidebar.
\
(3) After drawing a mask, click the Run FcF-Inpainting and witness the MAGIC! 🪄 ✨ ✨
\
(4) You may download/undo/redo/delete the changes on the image using the options below the image box.
Project Page | Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand | Github
" def create_model(network_pkl): print('Loading networks from "%s"...' % network_pkl) with dnnlib.util.open_url(network_pkl) as f: G = legacy.load_network_pkl(f)['G_ema'] # type: ignore G = G.eval().to(device) netG_params = sum(p.numel() for p in G.parameters()) print("Generator Params: {} M".format(netG_params/1e6)) return G def fcf_inpaint(G, org_img, erased_img, mask): label = torch.zeros([1, G.c_dim], device=device) if G.c_dim != 0: if class_idx is None: ValueError("class_idx can't be None.") label[:, class_idx] = 1 else: if class_idx is not None: print ('warn: --class=lbl ignored when running on an unconditional network') pred_img = G(img=torch.cat([0.5 - mask, erased_img], dim=1), c=label, truncation_psi=truncation_psi, noise_mode='const') comp_img = mask.to(device) * pred_img + (1 - mask).to(device) * org_img.to(device) return comp_img def denorm(img): img = np.asarray(img[0].cpu(), dtype=np.float32).transpose(1, 2, 0) img = (img +1) * 127.5 img = np.rint(img).clip(0, 255).astype(np.uint8) return img def pil_to_numpy(pil_img: Image) -> Tuple[torch.Tensor, torch.Tensor]: img = np.array(pil_img) return torch.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1 def process_mask(input_img, mask): rgb = cv2.cvtColor(input_img, cv2.COLOR_RGBA2RGB) mask = 255 - mask[:,:,3] mask = (mask > 0) * 1 rgb = np.array(rgb) mask_tensor = torch.from_numpy(mask).to(torch.float32) mask_tensor = mask_tensor.unsqueeze(0) mask_tensor = mask_tensor.unsqueeze(0).to(device) rgb = rgb.transpose(2,0,1) rgb = torch.from_numpy(rgb.astype(np.float32)).unsqueeze(0) rgb = (rgb.to(torch.float32) / 127.5 - 1).to(device) rgb_erased = rgb.clone() rgb_erased = rgb_erased * (1 - mask_tensor) # erase rgb rgb_erased = rgb_erased.to(torch.float32) rgb_erased = denorm(rgb_erased) return rgb_erased def inpaint(input_img, mask, model): rgb = cv2.cvtColor(input_img, cv2.COLOR_RGBA2RGB) mask = 255 - mask[:,:,3] mask = (mask > 0) * 1 rgb = np.array(rgb) mask_tensor = torch.from_numpy(mask).to(torch.float32) mask_tensor = mask_tensor.unsqueeze(0) mask_tensor = mask_tensor.unsqueeze(0).to(device) rgb = rgb.transpose(2,0,1) rgb = torch.from_numpy(rgb.astype(np.float32)).unsqueeze(0) rgb = (rgb.to(torch.float32) / 127.5 - 1).to(device) rgb_erased = rgb.clone() rgb_erased = rgb_erased * (1 - mask_tensor) # erase rgb rgb_erased = rgb_erased.to(torch.float32) comp_img = fcf_inpaint(G=model, org_img=rgb.to(torch.float32), erased_img=rgb_erased.to(torch.float32), mask=mask_tensor.to(torch.float32)) rgb_erased = denorm(rgb_erased) comp_img = denorm(comp_img) return comp_img def run_app(model): if "button_id" not in st.session_state: st.session_state["button_id"] = "" if "color_to_label" not in st.session_state: st.session_state["color_to_label"] = {} image_inpainting(model) with st.sidebar: st.markdown("---") def image_inpainting(model): if 'reuse_image' not in st.session_state: st.session_state.reuse_image = None st.title(title) st.markdown(article, unsafe_allow_html=True) st.markdown(description, unsafe_allow_html=True) image = st.sidebar.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"]) sample_image = st.sidebar.radio('Choose a Sample Image', [ 'wall-1.jpeg', 'wall-2.jpeg', 'house.jpeg', 'door.jpeg', 'floor.jpeg', 'church.jpeg', 'person-cliff.jpeg', 'person-fence.png', 'persons-white-fence.jpeg', ]) drawing_mode = st.sidebar.selectbox( "Drawing tool:", ("freedraw", "line") ) image = Image.open(image).convert("RGBA") if image else Image.open(f"./test_512/{sample_image}").convert("RGBA") image = image.resize((512, 512)) width, height = image.size stroke_width = st.sidebar.slider("Stroke width: ", 1, 100, 20) canvas_result = st_canvas( stroke_color="rgba(255, 0, 255, 0.8)", stroke_width=stroke_width, background_image=image, height=height, width=width, drawing_mode=drawing_mode, key="canvas", ) if canvas_result.image_data is not None and image and len(canvas_result.json_data["objects"]) > 0: im = canvas_result.image_data.copy() background = np.where( (im[:, :, 0] == 0) & (im[:, :, 1] == 0) & (im[:, :, 2] == 0) ) drawing = np.where( (im[:, :, 0] == 255) & (im[:, :, 1] == 0) & (im[:, :, 2] == 255) ) im[background]=[0,0,0,255] im[drawing]=[0,0,0,0] #RGBA if st.button('Run FcF-Inpainting'): col1, col2 = st.columns([1,1]) with col1: # if st.button('Show Image with Holes'): st.write("Masked Image") mask_show = process_mask(np.array(image), np.array(im)) st.image(mask_show) with col2: st.write("Inpainted Image") inpainted_img = inpaint(np.array(image), np.array(im), model) st.image(inpainted_img) if __name__ == "__main__": st.set_page_config( page_title="FcF-Inpainting", page_icon=":sparkles:" ) st.sidebar.subheader("Configuration") model = create_model("models/places_512.pkl") run_app(model)