# ------------------------------------------------------------------------ # Modified from MoE-LLaVA(https://github.com/PKU-YuanGroup/MoE-LLaVA) # ------------------------------------------------------------------------ from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from transformers.modeling_outputs import CausalLMOutputWithPast from dataclasses import dataclass from einops import rearrange, repeat, reduce, pack, unpack from transformers.utils import ModelOutput from transformers.activations import ACT2FN def MixtralDecoderLayerMOEBlock_forward(self): def forward(hidden_states: torch.Tensor): batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) router_z_loss = torch.logsumexp(router_logits, dim = -1) router_z_loss = torch.square(router_z_loss) router_z_loss = router_z_loss.mean() routing_weights = nn.functional.softmax(router_logits, dim=1, dtype=torch.float) density_1_proxy = reduce(routing_weights, '... n e -> ... e', 'mean') routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) one_hot_gate_indices = nn.functional.one_hot(rearrange(selected_experts, '... k -> k ...'), self.num_experts).float()[0] density_1 = reduce(one_hot_gate_indices, '... n e -> ... e', 'mean') balance_loss = (density_1_proxy * density_1).mean() * float(self.num_experts ** 2) routing_weights /= routing_weights.sum(dim=-1, keepdim=True) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # One hot encode the selected experts to create an expert mask # this will be used to easily index which expert is going to be sollicitated expert_mask = nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) # Loop over all available experts in the model and perform the computation on each expert for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] idx, top_x = torch.where(expert_mask[expert_idx]) if top_x.shape[0] == 0: continue # in torch it is faster to index using lists than torch tensors top_x_list = top_x.tolist() idx_list = idx.tolist() # Index the correct hidden states and compute the expert hidden state for # the current expert. We need to make sure to multiply the output hidden # states by `routing_weights` on the corresponding tokens (top-1 and top-2) current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None] # However `index_add_` only support torch tensors for indexing so we'll use # the `top_x` tensor here. final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states, (balance_loss, router_z_loss) return forward @dataclass class SMoECausalLMOutputWithPast(ModelOutput): loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None