# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- import torch import torch.nn as nn import numpy as np import math from timm.models.vision_transformer import PatchEmbed, Mlp from timm.models.layers import trunc_normal_ import math def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., num_patches=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.rel_pos_bias = RelativePositionBias( window_size=[int(num_patches**0.5), int(num_patches**0.5)], num_heads=num_heads) def get_masked_rel_bias(self, B, ids_keep): # get masked rel_pos_bias rel_pos_bias = self.rel_pos_bias() rel_pos_bias = rel_pos_bias.unsqueeze(dim=0).repeat(B, 1, 1, 1) rel_pos_bias_masked = torch.gather( rel_pos_bias, dim=2, index=ids_keep.unsqueeze(dim=1).unsqueeze(dim=-1).repeat(1, rel_pos_bias.shape[1], 1, rel_pos_bias.shape[-1])) rel_pos_bias_masked = torch.gather( rel_pos_bias_masked, dim=3, index=ids_keep.unsqueeze(dim=1).unsqueeze(dim=2).repeat(1, rel_pos_bias.shape[1], ids_keep.shape[1], 1)) return rel_pos_bias_masked def forward(self, x, ids_keep=None): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # make torchscript happy (cannot use tensor as tuple) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale if ids_keep is not None: rp_bias = self.get_masked_rel_bias(B, ids_keep) else: rp_bias = self.rel_pos_bias() attn += rp_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class RelativePositionBias(nn.Module): # https://github.com/microsoft/unilm/blob/master/beit/modeling_finetune.py def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = ( 2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - \ coords_flatten[:, None, :] relative_coords = relative_coords.permute( 1, 2, 0).contiguous() relative_coords[:, :, 0] += window_size[0] - 1 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros( size=(window_size[0] * window_size[1],) * 2, dtype=relative_coords.dtype) relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index) trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH # nH, Wh*Ww, Wh*Ww return relative_position_bias.permute(2, 0, 1).contiguous() ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat( [embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class LabelEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding( num_classes + use_cfg_embedding, hidden_size) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(labels.shape[0]) < self.dropout_prob else: drop_ids = force_drop_ids == 1 labels = torch.where(drop_ids.to(labels.device), self.num_classes, labels) return labels def forward(self, labels, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels) return embeddings ################################################################################# # Core MDT Model # ################################################################################# class MDTBlock(nn.Module): """ A MDT block with adaptive layer norm zero (adaLN-Zero) conMDTioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): super().__init__() self.norm1 = nn.LayerNorm( hidden_size, elementwise_affine=False, eps=1e-6) self.attn = Attention( hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs) self.norm2 = nn.LayerNorm( hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) def approx_gelu(): return nn.GELU(approximate="tanh") self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) ) def forward(self, x, c, ids_keep=None): shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation( c).chunk(6, dim=1) x = x + gate_msa.unsqueeze(1) * self.attn( modulate(self.norm1(x), shift_msa, scale_msa), ids_keep=ids_keep) x = x + \ gate_mlp.unsqueeze( 1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) return x class FinalLayer(nn.Module): """ The final layer of MDT. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm( hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear( hidden_size, patch_size * patch_size * out_channels, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class MDT(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, input_size=32, patch_size=2, in_channels=4, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, class_dropout_prob=0.1, num_classes=1000, learn_sigma=True, mask_ratio=None, decode_layer=None, ): super().__init__() self.learn_sigma = learn_sigma self.in_channels = in_channels self.out_channels = in_channels * 2 if learn_sigma else in_channels self.patch_size = patch_size self.num_heads = num_heads self.x_embedder = PatchEmbed( input_size, patch_size, in_channels, hidden_size, bias=True) self.t_embedder = TimestepEmbedder(hidden_size) self.y_embedder = LabelEmbedder( num_classes, hidden_size, class_dropout_prob) num_patches = self.x_embedder.num_patches # Will use learnbale sin-cos embedding: self.pos_embed = nn.Parameter(torch.zeros( 1, num_patches, hidden_size), requires_grad=True) self.blocks = nn.ModuleList([ MDTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, num_patches=num_patches) for _ in range(depth) ]) self.sideblocks = nn.ModuleList([ MDTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, num_patches=num_patches) for _ in range(1) ]) self.final_layer = FinalLayer( hidden_size, patch_size, self.out_channels) self.decoder_pos_embed = nn.Parameter(torch.zeros( 1, num_patches, hidden_size), requires_grad=True) if mask_ratio is not None: self.mask_token = nn.Parameter(torch.zeros(1, 1, hidden_size)) self.mask_ratio = float(mask_ratio) self.decode_layer = int(decode_layer) else: self.mask_token = nn.Parameter(torch.zeros( 1, 1, hidden_size), requires_grad=False) self.mask_ratio = None self.decode_layer = int(decode_layer) print("mask ratio:", self.mask_ratio, "decode_layer:", self.decode_layer) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize pos_embed by sin-cos embedding: pos_embed = get_2d_sincos_pos_embed( self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5)) self.pos_embed.data.copy_( torch.from_numpy(pos_embed).float().unsqueeze(0)) decoder_pos_embed = get_2d_sincos_pos_embed( self.decoder_pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5)) self.decoder_pos_embed.data.copy_( torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): w = self.x_embedder.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) nn.init.constant_(self.x_embedder.proj.bias, 0) # Initialize label embedding table: nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in MDT blocks: for block in self.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) for block in self.sideblocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) if self.mask_ratio is not None: torch.nn.init.normal_(self.mask_token, std=.02) def unpatchify(self, x): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] h = w = int(x.shape[1] ** 0.5) assert h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum('nhwpqc->nchpwq', x) imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p)) return imgs def random_masking(self, x, mask_ratio): """ Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random noise. x: [N, L, D], sequence """ N, L, D = x.shape # batch, length, dim len_keep = int(L * (1 - mask_ratio)) noise = torch.rand(N, L, device=x.device) # noise in [0, 1] # sort noise for each sample # ascend: small is keep, large is remove ids_shuffle = torch.argsort(noise, dim=1) ids_restore = torch.argsort(ids_shuffle, dim=1) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] x_masked = torch.gather( x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) # generate the binary mask: 0 is keep, 1 is remove mask = torch.ones([N, L], device=x.device) mask[:, :len_keep] = 0 # unshuffle to get the binary mask mask = torch.gather(mask, dim=1, index=ids_restore) return x_masked, mask, ids_restore, ids_keep def forward_side_interpolater(self, x, c, mask, ids_restore): # append mask tokens to sequence mask_tokens = self.mask_token.repeat( x.shape[0], ids_restore.shape[1] - x.shape[1], 1) x_ = torch.cat([x, mask_tokens], dim=1) x = torch.gather( x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle # add pos embed x = x + self.decoder_pos_embed # pass to the basic block x_before = x for sideblock in self.sideblocks: x = sideblock(x, c, ids_keep=None) # masked shortcut mask = mask.unsqueeze(dim=-1) x = x*mask + (1-mask)*x_before return x def forward(self, x, t, y, enable_mask=False): """ Forward pass of MDT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels enable_mask: Use mask latent modeling """ x = self.x_embedder( x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(t) # (N, D) y = self.y_embedder(y, self.training) # (N, D) c = t + y # (N, D) masked_stage = False # masking op for training if self.mask_ratio is not None and enable_mask: # masking: length -> length * mask_ratio x, mask, ids_restore, ids_keep = self.random_masking( x, self.mask_ratio) masked_stage = True for i in range(len(self.blocks)): if i == (len(self.blocks) - self.decode_layer): if self.mask_ratio is not None and enable_mask: x = self.forward_side_interpolater(x, c, mask, ids_restore) masked_stage = False else: # add pos embed x = x + self.decoder_pos_embed block = self.blocks[i] if masked_stage: x = block(x, c, ids_keep=ids_keep) else: x = block(x, c, ids_keep=None) # (N, T, patch_size ** 2 * out_channels) x = self.final_layer(x, c) x = self.unpatchify(x) # (N, out_channels, H, W) return x def forward_with_cfg(self, x, t, y, cfg_scale=None, diffusion_steps=1000, scale_pow=4.0): """ Forward pass of MDT, but also batches the unconditional forward pass for classifier-free guidance. """ # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb if cfg_scale is not None: half = x[: len(x) // 2] combined = torch.cat([half, half], dim=0) model_out = self.forward(combined, t, y) eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) scale_step = ( 1-torch.cos(((1-t/diffusion_steps)**scale_pow)*math.pi))*1/2 # power-cos scaling real_cfg_scale = (cfg_scale-1)*scale_step + 1 real_cfg_scale = real_cfg_scale[: len(x) // 2].view(-1, 1, 1, 1) half_eps = uncond_eps + real_cfg_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) return torch.cat([eps, rest], dim=1) else: model_out = self.forward(x, t, y) eps, rest = model_out[:, :3], model_out[:, 3:] return torch.cat([eps, rest], dim=1) ################################################################################# # Sine/Cosine Positional Embedding Functions # ################################################################################# # https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate( [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid( embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid( embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2. omega = 1. / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb ################################################################################# # MDT Configs # ################################################################################# def MDT_XL_2(**kwargs): return MDT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs) def MDT_XL_4(**kwargs): return MDT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs) def MDT_XL_8(**kwargs): return MDT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs) def MDT_L_2(**kwargs): return MDT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs) def MDT_L_4(**kwargs): return MDT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs) def MDT_L_8(**kwargs): return MDT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs) def MDT_B_2(**kwargs): return MDT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs) def MDT_B_4(**kwargs): return MDT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs) def MDT_B_8(**kwargs): return MDT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) def MDT_S_2(**kwargs): return MDT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) def MDT_S_4(**kwargs): return MDT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) def MDT_S_8(**kwargs): return MDT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)