# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2 import gradio as gr from diffusers.utils import load_image from sam2edit_lora import EditAnythingLoraModel, config_dict def create_demo(process): print("The GUI is not fully tested yet. Please open an issue if you find bugs.") WARNING_INFO = f'''### [NOTE] the model is collected from the Internet for demo only, please do not use it for commercial purposes. We are not responsible for possible risks using this model. ''' block = gr.Blocks() with block as demo: with gr.Row(): gr.Markdown( "## EditAnything https://github.com/sail-sg/EditAnything ") with gr.Row(): with gr.Column(): source_image = gr.Image( source='upload', label="Image (Upload an image and cover the region you want to edit with sketch)", type="numpy", tool="sketch") enable_all_generate = gr.Checkbox( label='Auto generation on all region.', value=False) prompt = gr.Textbox( label="Prompt (Text in the expected things of edited region)") enable_auto_prompt = gr.Checkbox( label='Auto generate text prompt from input image with BLIP2: Warning: Enable this may makes your prompt not working.', value=False) a_prompt = gr.Textbox( label="Added Prompt", value='best quality, extremely detailed') n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') control_scale = gr.Slider( label="Mask Align strength (Large value means more strict alignment with SAM mask)", minimum=0, maximum=1, value=1, step=0.1) run_button = gr.Button(label="Run") num_samples = gr.Slider( label="Images", minimum=1, maximum=12, value=2, step=1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) enable_tile = gr.Checkbox( label='Tile refinement for high resolution generation.', value=True) with gr.Accordion("Advanced options", open=False): mask_image = gr.Image( source='upload', label="(Optional) Upload a predefined mask of edit region if you do not want to write your prompt.", type="numpy", value=None) image_resolution = gr.Slider( label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider( label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox( label='Guess Mode', value=False) detect_resolution = gr.Slider( label="SAM Resolution", minimum=128, maximum=2048, value=1024, step=1) ddim_steps = gr.Slider( label="Steps", minimum=1, maximum=100, value=30, step=1) scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) eta = gr.Number(label="eta (DDIM)", value=0.0) with gr.Column(): result_gallery = gr.Gallery( label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') result_text = gr.Text(label='BLIP2+Human Prompt Text') ips = [source_image, enable_all_generate, mask_image, control_scale, enable_auto_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, enable_tile] run_button.click(fn=process, inputs=ips, outputs=[ result_gallery, result_text]) # with gr.Row(): # ex = gr.Examples(examples=examples, fn=process, # inputs=[a_prompt, n_prompt, scale], # outputs=[result_gallery], # cache_examples=False) with gr.Row(): gr.Markdown(WARNING_INFO) return demo if __name__ == '__main__': model = EditAnythingLoraModel(base_model_path="stabilityai/stable-diffusion-2-inpainting", controlmodel_name='LAION Pretrained(v0-4)-SD21', extra_inpaint=False, lora_model_path=None, use_blip=True) demo = create_demo(model.process) demo.queue().launch(server_name='0.0.0.0')