# coding=utf-8 # Copyright 2023 South China University of Technology and # Engineering Research Ceter of Ministry of Education on Human Body Perception. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Author: Chen Yirong # Date: 2023.06.07 ''' 运行方式 ```bash pip install streamlit # 第一次运行需要安装streamlit pip install streamlit_chat # 第一次运行需要安装streamlit_chat streamlit run bianque_v2_app.py --server.port 9005 ``` ## 测试访问 http://:9005 ''' import os import torch import streamlit as st from streamlit_chat import message from transformers import AutoModel, AutoTokenizer os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 默认使用0号显卡,避免Windows用户忘记修改该处 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 指定模型名称或路径 model_name_or_path = 'scutcyr/BianQue-2' model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True).half() model.to(device) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) def answer(user_history, bot_history, sample=True, top_p=0.7, temperature=0.95): '''sample:是否抽样。生成任务,可以设置为True; top_p=0.7, temperature=0.95时的生成效果较好 top_p=1, temperature=0.7时提问能力会提升 top_p:0-1之间,生成的内容越多样 max_new_tokens=512 lost...''' if len(bot_history)>0: context = "\n".join([f"病人:{user_history[i]}\n医生:{bot_history[i]}" for i in range(len(bot_history))]) input_text = context + "\n病人:" + user_history[-1] + "\n医生:" else: input_text = "病人:" + user_history[-1] + "\n医生:" #if user_history[-1] =="你好" or user_history[-1] =="你好!": return "我是利用人工智能技术,结合大数据训练得到的智能医疗问答模型扁鹊,你可以向我提问。" #return "我是生活空间健康对话大模型扁鹊,欢迎向我提问。" print(input_text) if not sample: response, history = model.chat(tokenizer, query=input_text, history=None, max_length=2048, num_beams=1, do_sample=False, top_p=top_p, temperature=temperature, logits_processor=None) else: response, history = model.chat(tokenizer, query=input_text, history=None, max_length=2048, num_beams=1, do_sample=True, top_p=top_p, temperature=temperature, logits_processor=None) print('医生: '+response) return response st.set_page_config( page_title="扁鹊健康大模型(BianQue-2.0)", page_icon="🧊", layout="wide", initial_sidebar_state="expanded", menu_items={ 'About': """ - 版本:扁鹊健康大模型(BianQue) V2.0.0 Beta - 机构:广东省数字孪生人重点实验室 - 作者:陈艺荣、王振宇、徐志沛、方凱、李思航、王骏宏、邢晓芬、徐向民 """ } ) st.header("扁鹊健康大模型(BianQue-2.0)") with st.expander("ℹ️ - 关于我们", expanded=False): st.write( """ - 版本:扁鹊健康大模型(BianQue) V2.0.0 Beta - 机构:广东省数字孪生人重点实验室 - 作者:陈艺荣、王振宇、徐志沛、方凱、李思航、王骏宏、邢晓芬、徐向民 """ ) # https://docs.streamlit.io/library/api-reference/performance/st.cache_resource @st.cache_resource def load_model(): model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True).half() model.to(device) print('Model Load done!') return model @st.cache_resource def load_tokenizer(): tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) print('Tokenizer Load done!') return tokenizer model = load_model() tokenizer = load_tokenizer() if 'generated' not in st.session_state: st.session_state['generated'] = [] if 'past' not in st.session_state: st.session_state['past'] = [] user_col, ensure_col = st.columns([5, 1]) def get_text(): input_text = user_col.text_area("请在下列文本框输入您的咨询内容:","", key="input", placeholder="请输入您的咨询内容,并且点击Ctrl+Enter(或者发送按钮)确认内容") if ensure_col.button("发送", use_container_width=True): if input_text: return input_text user_input = get_text() if user_input: st.session_state.past.append(user_input) output = answer(st.session_state['past'],st.session_state["generated"]) st.session_state.generated.append(output) if st.session_state['generated']: for i in range(len(st.session_state['generated'])): if i == 0: # message(st.session_state['past'][i], is_user=True, key=str(i) + '_user', avatar_style="avataaars", seed=26) message(st.session_state["generated"][i]+"\n\n------------------\n以下回答由扁鹊健康模型自动生成,仅供参考!", key=str(i), avatar_style="avataaars", seed=5) else: message(st.session_state['past'][i], is_user=True, key=str(i) + '_user', avatar_style="avataaars", seed=26) #message(st.session_state["generated"][i], key=str(i)) message(st.session_state["generated"][i], key=str(i), avatar_style="avataaars", seed=5) if st.button("清理对话缓存"): # Clear values from *all* all in-memory and on-disk data caches: # i.e. clear values from both square and cube st.session_state['generated'] = [] st.session_state['past'] = []