import gradio as gr import numpy as np import pandas as pd from sklearn.metrics.pairwise import cosine_similarity import os import requests url = 'https://huggingface.co/datasets/sheacon/song_lyrics/resolve/main/v2ga_w_embeddings.parquet' response = requests.get(url, stream=True) filename = os.path.join(os.getcwd(), url.split('/')[-1]) with open(filename, 'wb') as file: for chunk in response.iter_content(chunk_size=8192): if chunk: file.write(chunk) print(f"File '{filename}' has been downloaded to the present working directory.") pwd = os.getcwd() print("Present Working Directory:", pwd) contents = os.listdir(pwd) print("Contents of the Directory:") for item in contents: print(item) df = pd.read_csv('v2ga_w_embeddings.parquet') def get_most_similar_songs(artist, title, df): def find_most_similar(embedding_column): chosen_song = df[(df['artist'] == artist) & (df['title'] == title)][embedding_column].values if len(chosen_song) == 0: return None chosen_song = chosen_song.reshape(1, -1) similarity_matrix = cosine_similarity(df[embedding_column].values.tolist(), chosen_song) most_similar_indices = np.argsort(similarity_matrix.flatten())[-5:-1][::-1] # Top 4 excluding the selected song return df.iloc[most_similar_indices][['title', 'artist', 'lyrics']].to_dict(orient='records') results = {} for embedding in ['embedding_glove', 'embedding_minilm', 'embedding_roberta', 'embedding_gpt']: most_similar = find_most_similar(embedding) if most_similar is None: return "Song not found. Please ensure the artist and title are correct." results[embedding] = most_similar return results def update_titles_dropdown(artist): titles = sorted(df[df['artist'] == artist]['title'].unique()) return titles artists = sorted(df['artist'].unique()) artist_dropdown = gr.inputs.Dropdown(artists, label="Artist") title_dropdown = gr.inputs.Dropdown([], label="Title", updatable=True) output_interface = gr.outputs.JSON(label="Similar Songs") iface = gr.Interface( fn=get_most_similar_songs, inputs=[artist_dropdown, title_dropdown], outputs=output_interface, examples=[("The Beatles", "Let It Be"), ("Eminem", "Lose Yourself")], title="Semantic Song Search: Most Similar Song", description="Find the 4 most similar songs to the selected song based on different embeddings (GloVe, MiniLM, RoBERTa, GPT).", update=update_titles_dropdown ) iface.launch()