import torch.nn as nn class AGGNet(nn.Module): def __init__(self) -> None: super().__init__() self.stage1=nn.Sequential( nn.Conv2d(in_channels=3,out_channels=64,kernel_size=3,padding=1,bias=False), nn.ReLU() ) self.stage2=nn.Sequential( nn.ConvTranspose2d(in_channels=64,out_channels=3,kernel_size=3,padding=1,bias=False), ) def forward(self, x): x1 = self.stage1(x) x2 = self.stage2(x1) return x + x2