import torch from transformers import LogitsProcessor # HuggingFace's generate function does not yet support a `min_new_tokens`, so we need to add the functionality # ourselves by adding a custom logits processor. Adapted from: # https://huggingface.co/transformers/v4.1.1/_modules/transformers/generation_logits_process.html#MinLengthLogitsProcessor class MinNewTokensLogitsProcessor(LogitsProcessor): r""" A [`LogitsProcessor`] enforcing a minimum response length by setting the `EOS` probability to 0 until `min_new_tokens` new tokens have been generated since `input_length`. """ def __init__(self, min_new_tokens: int, eos_token_id: int, input_length: int): if not isinstance(min_new_tokens, int) or min_new_tokens < 0: raise ValueError(f"`min_new_tokens` has to be a positive integer, but is {min_new_tokens}") if not isinstance(eos_token_id, int) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}") if not isinstance(input_length, int) or input_length < 0: raise ValueError(f"`input_length` has to be a positive integer, but is {input_length}") self.min_new_tokens = min_new_tokens self.eos_token_id = eos_token_id self.input_length = input_length def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: if not hasattr(self, "input_length"): raise ValueError("`save_input_length` has to be called before `__call__`") total_length = input_ids.shape[-1] response_len = total_length - self.input_length if response_len < self.min_new_tokens: scores[:, self.eos_token_id] = -float("inf") return scores