import os import tensorflow as tf os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' import numpy as np import PIL.Image import gradio as gr import tensorflow_hub as hub import matplotlib.pyplot as plt def tensor_to_image(tensor): tensor = tensor*255 tensor = np.array(tensor, dtype=np.uint8) if np.ndim(tensor)>3: assert tensor.shape[0] == 1 tensor = tensor[0] return PIL.Image.fromarray(tensor) style_urls = { 'Kanagawa great wave': 'The_Great_Wave_off_Kanagawa.jpg', 'Kandinsky composition 7': 'Kandinsky_Composition_7.jpg', 'Hubble pillars of creation': 'Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg', 'Van gogh starry night': 'Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg', 'Turner nantes': 'JMW_Turner_-_Nantes_from_the_Ile_Feydeau.jpg', 'Munch scream': 'Edvard_Munch.jpg', 'Picasso demoiselles avignon': 'Les_Demoiselles.jpg', 'Picasso violin': 'picaso_violin.jpg', 'Picasso bottle of rum': 'picaso_rum.jpg', 'Fire': 'Large_bonfire.jpg', 'Derkovits woman head': 'Derkovits_Gyula_Woman_head_1922.jpg', 'Amadeo style life': 'Amadeo_Souza_Cardoso.jpg', 'Derkovtis talig': 'Derkovits_Gyula_Talig.jpg', 'Kadishman': 'kadishman.jpeg' } style_images = [k for k, v in style_urls.items()] content_image_input = gr.inputs.Image(label="Content Image") radio_style = gr.Radio(style_images, label="Choose Style") def perform_neural_transfer(content_image_input, style_image_input): content_image = content_image_input.astype(np.float32)[np.newaxis, ...] / 255. content_image = tf.image.resize(content_image, (256, 256)) style_image_input = style_urls[style_image_input] style_image_input = plt.imread(style_image_input) style_image = style_image_input.astype(np.float32)[np.newaxis, ...] / 255. style_image = tf.image.resize(style_image, (256, 256)) hub_module = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') outputs = hub_module(tf.constant(content_image), tf.constant(style_image)) stylized_image = outputs[0].resize(outputs[0], (256, 256)) return tensor_to_image(stylized_image) app_interface = gr.Interface(fn=perform_neural_transfer, inputs=[content_image_input, radio_style], outputs="image", title="Art Generation with Neural Style Transfer", ) app_interface.launch()