import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('./model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = 'Bear Type Classifier' description = 'FasiAI Example on how to classify types of bears.' article="
" interpretation='default' enable_queue = True examples = ['./black_bear.jpeg'] iface = gr.Interface(fn=predict, inputs=gr.Image(shape=(512, 512)), outputs="label", title=title, description=description, article=article, examples=examples, interpretation=interpretation, enable_queue=enable_queue) iface.launch()