from io import BytesIO import base64 import numpy as np import matplotlib.pyplot as plt import torch def fig_to_base64(fig): buf = BytesIO() fig.savefig(buf, format='png', bbox_inches='tight') plt.close(fig) buf.seek(0) return base64.b64encode(buf.getvalue()).decode() def show_mask(mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30/255, 144/255, 255/255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) def show_box(box, ax): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) def show_points(coords, labels, ax, marker_size=375): pos_points = coords[labels==1] neg_points = coords[labels==0] ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) def show_boxes_on_image_base64(raw_image, boxes): fig, ax = plt.subplots(figsize=(10,10)) ax.imshow(raw_image) for box in boxes: show_box(box, ax) ax.axis('off') return fig_to_base64(fig) def show_points_on_image_base64(raw_image, input_points, input_labels=None): fig, ax = plt.subplots(figsize=(10,10)) ax.imshow(raw_image) input_points = np.array(input_points) labels = np.ones_like(input_points[:, 0]) if input_labels is None else np.array(input_labels) show_points(input_points, labels, ax) ax.axis('off') return fig_to_base64(fig) def show_points_and_boxes_on_image_base64(raw_image, boxes, input_points, input_labels=None): fig, ax = plt.subplots(figsize=(10,10)) ax.imshow(raw_image) input_points = np.array(input_points) labels = np.ones_like(input_points[:, 0]) if input_labels is None else np.array(input_labels) show_points(input_points, labels, ax) for box in boxes: show_box(box, ax) ax.axis('off') return fig_to_base64(fig) def show_masks_on_image_base64(raw_image, masks, scores): if len(masks.shape) == 4: masks = masks.squeeze() if scores.shape[0] == 1: scores = scores.squeeze() nb_predictions = scores.shape[-1] print(f"Number of predictions: {nb_predictions}") fig, axes = plt.subplots(1, nb_predictions, figsize=(5 * nb_predictions, 5)) if nb_predictions == 1: axes = [axes] for i, (mask, score) in enumerate(zip(masks, scores)): print(i) mask = mask.cpu().detach().numpy() axes[i].imshow(np.array(raw_image)) show_mask(mask, axes[i]) axes[i].title.set_text(f"Mask {i+1}, Score: {score.item():.3f}") axes[i].axis("off") return fig_to_base64(fig) def show_first_mask_on_image_base64(raw_image, masks, scores): if masks.ndim == 4: mask = masks[0, 0] elif masks.ndim == 3: mask = masks[0] else: mask = masks if isinstance(mask, torch.Tensor): mask = mask.cpu().detach().numpy() score_text = "" if scores is not None: if isinstance(scores, torch.Tensor): scores = scores.flatten() score = scores[0].item() else: score = float(np.array(scores).flatten()[0]) score_text = f"Score: {score:.3f}" fig, ax = plt.subplots(figsize=(5, 5)) ax.imshow(np.array(raw_image)) show_mask(mask, ax) ax.set_title(score_text) ax.axis("off") return fig_to_base64(fig) def show_all_annotations_on_image_base64(raw_image, masks=None, scores=None, boxes=None, input_points=None, input_labels=None, model_name=None): fig, ax = plt.subplots(figsize=(10, 10)) ax.imshow(np.array(raw_image)) if masks is not None: if masks.ndim == 4: mask = masks[0, 0] elif masks.ndim == 3: mask = masks[0] else: mask = masks if isinstance(mask, torch.Tensor): mask = mask.cpu().detach().numpy() show_mask(mask, ax) if scores is not None: if isinstance(scores, torch.Tensor): scores = scores.flatten() score = scores[0].item() else: score = float(np.array(scores).flatten()[0]) #ax.set_title(f"{model_name} - Score: {score:.3f}") ax.set_title(f"{model_name}") if input_points is not None: input_points = np.array(input_points) labels = np.ones_like(input_points[:, 0]) if input_labels is None else np.array(input_labels) show_points(input_points, labels, ax) if boxes is not None: for box in boxes: show_box(box, ax) ax.axis("off") return fig_to_base64(fig)