import gradio as gr import pandas as pd import numpy as np import json from io import StringIO def dynamic_huff_model(df_distances, df_attractiveness, alpha, beta, df_capacity, df_population=None, iterations=5, crowding_threshold=1.0): """ Iteratively calculates the distribution of people/visitors to destinations considering capacity and crowding based on an extended Huff model with linear decay function. Parameters: - df_distances, df_attractiveness, alpha, beta, df_capacity, df_population are the same as before. - iterations (int): The number of iterations to distribute the population. - crowding_threshold (float): The ratio of current visitors to capacity at which the decay of attractiveness starts. Returns: - pd.DataFrame: A DataFrame with the final distribution of visitors to each destination. """ if df_population is None: df_population = pd.Series(np.ones(df_distances.shape[0]), index=df_distances.index) # Initialize the visitors DataFrame df_visitors = pd.DataFrame(0, index=df_distances.index, columns=df_distances.columns) # Distribute the population over the iterations df_population_per_iteration = df_population / iterations # Run the iterative distribution process for _ in range(iterations): attractiveness = df_attractiveness.copy() current_visitors = df_visitors.sum(axis=0) # Calculate the decay based on the relative share of free capacity relative_crowding = current_visitors / df_capacity decay_factor = np.where(relative_crowding < crowding_threshold, 1, 1 - (relative_crowding - crowding_threshold) / (1 - crowding_threshold)) attractiveness *= decay_factor # Calculate Huff model probabilities distance_term = df_distances ** -beta numerator = (attractiveness ** alpha).multiply(distance_term, axis='columns') denominator = numerator.sum(axis='columns') probabilities = numerator.div(denominator, axis='index').fillna(0) # Distribute visitors based on probabilities and population visitors_this_iteration = probabilities.multiply(df_population_per_iteration, axis='index') # Adjust for excess visitors beyond capacity potential_new_visitors = df_visitors + visitors_this_iteration excess_visitors = potential_new_visitors.sum(axis=0) - df_capacity excess_visitors[excess_visitors < 0] = 0 visitors_this_iteration -= visitors_this_iteration.multiply(excess_visitors, axis='columns') / visitors_this_iteration.sum(axis=0) df_visitors += visitors_this_iteration # Return the final distribution of visitors return df_visitors def app_function(input_json): # Parse the input JSON string inputs = json.loads(input_json) # Convert stringified CSVs in JSON to DataFrames df_distances = pd.read_csv(StringIO(inputs["df_distances"])) df_attractiveness = pd.Series(json.loads(inputs["df_attractiveness"])) alpha = inputs["alpha"] beta = inputs["beta"] df_capacity = pd.Series(json.loads(inputs["df_capacity"])) df_population = pd.Series(json.loads(inputs["df_population"])) if "df_population" in inputs else None iterations = inputs.get("iterations", 5) crowding_threshold = inputs.get("crowding_threshold", 1.0) # Call the dynamic Huff model function with these parameters result = dynamic_huff_model(df_distances, df_attractiveness, alpha, beta, df_capacity, df_population, iterations, crowding_threshold) # Convert the result DataFrame to a CSV string for Gradio output result_json = result.to_json(orient='split') return json.loads(result_json) # Define the Gradio interface with a single JSON input iface = gr.Interface( fn=app_function, inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."), outputs=gr.JSON(label="Output JSON"), title="Dynamic Huff Model" ) iface.launch()