import date_parser as dp import preproc import category_parser as cp import sentiment_parser as sp import word_transformations as wt # def get_gender(tokens): # r = [token.feats['Gender'] for sent in tokenizing(text) for token in sent if (token.feats.get('Gender') and token.feats.get('Voice')) ] # @st.experimental_memo def analyze(text): # Разделение текста на датированные куски diary = dp.date_extractor_for_diary(text) # Очистка текста дневника diary = preproc.text_preproc(diary) # Токенизация текста дневника по предложениям diary['tokens'] = diary['text'].apply(lambda text: preproc.tokenizing(text)) # # Выделение фактов из текста diary['locations'] = diary['tokens'].apply(lambda tokens: cp.get_facts(tokens, 'locations')) # Определение сентимента по записям diary['sent'] = diary['tokens'].apply(lambda tokens: sp.get_overall_sentiment(tokens)) diary['sent_index'] = diary['sent'].apply(lambda sent: sp.get_sentiment_index(sent)) return diary