import dash from dash import Dash, html, dcc, callback, Output, Input import plotly.express as px from app import app import pandas as pd import datetime import requests from io import StringIO from datetime import date # from jupyter_dash import JupyterDash # from dash.dependencies import Input, Output import dash_bootstrap_components as dbc import plotly.express as px server = app.server url='https://drive.google.com/file/d/1NaXOYHQFF5UO5rQr4rn8Lr3bkYMSOq4_/view?usp=sharing' url='https://drive.google.com/uc?id=' + url.split('/')[-2] # reading of file df = pd.read_csv(url) df['date'] = pd.to_datetime(df['date']) df = df.rename(columns={df.columns[4]: "Veículos de notícias"}) df['FinBERT_label'] = df['FinBERT_label'].astype(str) df['FinBERT_label'].replace({ '3.0': 'positive', '2.0': 'neutral', '1.0': 'negative' }, inplace=True) unique_topics = df['Topic'].unique() print(unique_topics) counts = df.groupby(['date', 'Topic', 'domain_folder_name', 'FinBERT_label']).size().reset_index(name='count') counts['count'] = counts['count'].astype('float64') counts['rolling_mean_counts'] = counts['count'].rolling(window=30, min_periods=2).mean() df_pos = counts[[x in ['positive'] for x in counts.FinBERT_label]] df_neu = counts[[x in ['neutral'] for x in counts.FinBERT_label]] df_neg = counts[[x in ['negative'] for x in counts.FinBERT_label]] app.layout = dbc.Container( [ dbc.Row([ # row 1 dbc.Col([html.H1('Evolução temporal de sentimento em títulos de notícias')], className="text-center mt-3 mb-1") ] ), dbc.Row([ # row 2 dbc.Label("Selecione um período (mm/dd/aaaa):", className="fw-bold") ]), dbc.Row([ # row 3 dcc.DatePickerRange( id='date-range', min_date_allowed=df['date'].min().date(), max_date_allowed=df['date'].max().date(), initial_visible_month=df['date'].min().date(), start_date=df['date'].min().date(), end_date=df['date'].max().date() ) ]), dbc.Row([ # row 4 dbc.Label("Escolha um tópico:", className="fw-bold") ]), dbc.Row([ # row 5 dbc.Col( dcc.Dropdown( id="topic-selector", options=[ {"label": topic, "value": topic} for topic in unique_topics ], value="Imigrantes", # Set the initial value style={"width": "50%"}) ) ]), dbc.Row([ # row 6 dbc.Col(dcc.Graph(id='line-graph-1'), ) ]), dbc.Row([ # row 7 dbc.Label("Escolha um site de notícias:", className="fw-bold") ]), dbc.Row([ # row 8 dbc.Col( dcc.Dropdown( id="domain-selector", options=[ {"label": domain, "value": domain} for domain in unique_domains ], value="expresso-pt", # Set the initial value style={"width": "50%"}) ) ]), dbc.Row([ # row 9 dbc.Col(dcc.Graph(id='line-graph-2'), ) ]), dbc.Row([ # row 10 dbc.Col(dcc.Graph(id='line-graph-3'), ) ]), dbc.Row([ # row 11 dbc.Col(dcc.Graph(id='line-graph-4'), ) ]) ]) # callback decorator @app.callback( Output('line-graph-1', 'figure'), Output('line-graph-2', 'figure'), Output('line-graph-3', 'figure'), Output('line-graph-4', 'figure'), Input("topic-selector", "value"), Input ("domain-selector", "value"), Input('date-range', 'start_date'), Input('date-range', 'end_date') ) # callback function def update_output(selected_topic, start_date, end_date): # filter dataframes based on updated data range mask_1 = ((df["Topic"] == selected_topic) & (df['date'] >= start_date) & (df['date'] <= end_date)) df_filtered = df.loc[mask_1] #create line graphs based on filtered dataframes line_fig_1 = px.line(df_filtered, x="date", y="normalised results", color='Veículos de notícias', title="O gráfico mostra a evolução temporal de sentimento dos títulos de notícias. Numa escala de -1 (negativo) a 1 (positivo), sendo 0 (neutro).") #set x-axis title and y-axis title in line graphs line_fig_1.update_layout( xaxis_title='Data', yaxis_title='Classificação de Sentimento') #set label format on y-axis in line graphs line_fig_1.update_xaxes(tickformat="%b %d
%Y") # filter dataframes based on updated data range mask_2 = ((df_pos["Topic"] == selected_topic) & (df_pos["domain_folder_name"] == selected_domain) & (df_pos['date'] >= start_date) & (df_pos['date'] <= end_date)) mask_3 = ((df_neu["Topic"] == selected_topic) & (df_neu["domain_folder_name"] == selected_domain) & (df_neu['date'] >= start_date) & (df_neu['date'] <= end_date)) mask_4 = ((df_neg["Topic"] == selected_topic) & (df_neg["domain_folder_name"] == selected_domain) & (df_neg['date'] >= start_date) & (df_neg['date'] <= end_date)) df2_filtered = df_pos.loc[mask_2] df3_filtered = df_neu.loc[mask_3] df4_filtered = df_neg.loc[mask_4] #create line graphs based on filtered dataframes line_fig_2 = px.line(df2_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label", title="Positive") line_fig_3 = px.line(df3_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label", title="Neutral") line_fig_4 = px.line(df4_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label", title="Negative") #set x-axis title and y-axis title in line graphs line_fig_2.update_layout( xaxis_title='Data', yaxis_title='Número de notícias com sentimento positivo') line_fig_3.update_layout( xaxis_title='Data', yaxis_title='Número de notícias com sentimento neutro') line_fig_4.update_layout( xaxis_title='Data', yaxis_title='Número de notícias com sentimento negativo') #set label format on y-axis in line graphs line_fig_2.update_xaxes(tickformat="%b %d
%Y") line_fig_3.update_xaxes(tickformat="%b %d
%Y") line_fig_4.update_xaxes(tickformat="%b %d
%Y") #set label format on y-axis in line graphs line_fig_2.update_traces(line_color='#1E88E5') line_fig_3.update_traces(line_color='#004D40') line_fig_4.update_traces(line_color='#D81B60') return line_fig_1, line_fig_2, line_fig_3, line_fig_4 # return line_fig_1 # df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv') # app.layout = html.Div([ # html.H1(children='Title of Dash App', style={'textAlign':'center'}), # dcc.Dropdown(df.country.unique(), 'Canada', id='dropdown-selection'), # dcc.Graph(id='graph-content') # ]) # @callback( # Output('graph-content', 'figure'), # Input('dropdown-selection', 'value') # ) # def update_graph(value): # dff = df[df.country==value] # return px.line(dff, x='year', y='pop') if __name__ == '__main__': app.run_server(debug=True)