File size: 6,457 Bytes
639f3bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# π§ Sema Chat API Configuration Guide
## π― **MiniMax Integration**
### Configuration
```bash
MODEL_TYPE=minimax
MODEL_NAME=MiniMax-M1
MINIMAX_API_KEY=your_minimax_api_key
MINIMAX_API_URL=https://api.minimax.chat/v1/text/chatcompletion_v2
MINIMAX_MODEL_VERSION=abab6.5s-chat
```
### Features
- β
**Reasoning Capabilities**: Shows model's thinking process
- β
**Streaming Support**: Real-time response generation
- β
**Custom API Integration**: Direct integration with MiniMax API
- β
**Reasoning Content**: Displays both reasoning and final response
### Example Usage
```bash
curl -X POST "http://localhost:7860/api/v1/chat" \
-H "Content-Type: application/json" \
-d '{
"message": "Solve this math problem: 2x + 5 = 15",
"session_id": "minimax-test"
}'
```
**Response includes reasoning:**
```json
{
"message": "[Reasoning: I need to solve for x. First, subtract 5 from both sides: 2x = 10. Then divide by 2: x = 5]\n\nTo solve 2x + 5 = 15:\n1. Subtract 5 from both sides: 2x = 10\n2. Divide by 2: x = 5\n\nTherefore, x = 5.",
"session_id": "minimax-test",
"model_name": "MiniMax-M1"
}
```
---
## π₯ **Gemma Integration**
### Option 1: Local Gemma (Free Tier)
```bash
MODEL_TYPE=local
MODEL_NAME=google/gemma-2b-it
DEVICE=auto
```
### Option 2: Gemma via HuggingFace API
```bash
MODEL_TYPE=hf_api
MODEL_NAME=google/gemma-2b-it
HF_API_TOKEN=your_hf_token
```
### Option 3: Gemma via Google AI Studio
```bash
MODEL_TYPE=google
MODEL_NAME=gemma-2-9b-it
GOOGLE_API_KEY=your_google_api_key
```
### Available Gemma Models
- **gemma-2-2b-it** (2B parameters, instruction-tuned)
- **gemma-2-9b-it** (9B parameters, instruction-tuned)
- **gemma-2-27b-it** (27B parameters, instruction-tuned)
- **gemini-1.5-flash** (Fast, efficient)
- **gemini-1.5-pro** (Most capable)
### Example Usage
```bash
curl -X POST "http://localhost:7860/api/v1/chat" \
-H "Content-Type: application/json" \
-d '{
"message": "Explain quantum computing in simple terms",
"session_id": "gemma-test",
"temperature": 0.7
}'
```
---
## π **Complete Backend Comparison**
| Backend | Cost | Setup | Streaming | Special Features |
|---------|------|-------|-----------|------------------|
| **Local** | Free | Medium | β
| Offline, Private |
| **HF API** | Free/Paid | Easy | β
| Many models |
| **OpenAI** | Paid | Easy | β
| High quality |
| **Anthropic** | Paid | Easy | β
| Long context |
| **MiniMax** | Paid | Easy | β
| Reasoning |
| **Google** | Free/Paid | Easy | β
| Multimodal |
---
## π§ **Configuration Examples**
### Free Tier Setup (HuggingFace Spaces)
```bash
# Best for free deployment
MODEL_TYPE=local
MODEL_NAME=TinyLlama/TinyLlama-1.1B-Chat-v1.0
DEVICE=cpu
MAX_NEW_TOKENS=256
TEMPERATURE=0.7
```
### Production Setup (API-based)
```bash
# Best for production with fallbacks
MODEL_TYPE=openai
MODEL_NAME=gpt-3.5-turbo
OPENAI_API_KEY=your_key
# Fallback configuration
FALLBACK_MODEL_TYPE=hf_api
FALLBACK_MODEL_NAME=microsoft/DialoGPT-medium
HF_API_TOKEN=your_token
```
### Research Setup (Multiple Models)
```bash
# Primary: Latest Gemini
MODEL_TYPE=google
MODEL_NAME=gemini-1.5-pro
GOOGLE_API_KEY=your_key
# For reasoning tasks
REASONING_MODEL_TYPE=minimax
REASONING_MODEL_NAME=MiniMax-M1
MINIMAX_API_KEY=your_key
```
---
## π― **Model Selection Guide**
### For **Free Deployment** (HuggingFace Spaces):
1. **TinyLlama/TinyLlama-1.1B-Chat-v1.0** - Smallest, fastest
2. **microsoft/DialoGPT-medium** - Better conversations
3. **Qwen/Qwen2.5-0.5B-Instruct** - Good instruction following
### For **Reasoning Tasks**:
1. **MiniMax M1** - Shows thinking process
2. **Claude-3 Opus** - Deep reasoning
3. **GPT-4** - Complex problem solving
### For **Conversations**:
1. **Claude-3 Haiku** - Natural, fast
2. **GPT-3.5-turbo** - Balanced cost/quality
3. **Gemini-1.5-flash** - Fast, capable
### For **Multilingual**:
1. **Gemma-2-9b-it** - Good multilingual
2. **GPT-4** - Excellent multilingual
3. **Local models** - Depends on training
---
## π **Dynamic Model Switching**
The API supports runtime model switching:
```python
# Switch to MiniMax for reasoning
POST /api/v1/model/switch
{
"model_type": "minimax",
"model_name": "MiniMax-M1"
}
# Switch back to fast model
POST /api/v1/model/switch
{
"model_type": "google",
"model_name": "gemini-1.5-flash"
}
```
---
## π§ͺ **Testing Your Setup**
### Test All Backends
```bash
python examples/test_backends.py
```
### Test Specific Backend
```bash
# Test MiniMax
MINIMAX_API_KEY=your_key python -c "
import asyncio
from app.services.model_backends.minimax_api import MiniMaxAPIBackend
from app.models.schemas import ChatMessage
async def test():
backend = MiniMaxAPIBackend('MiniMax-M1', api_key='your_key', api_url='your_url')
await backend.load_model()
messages = [ChatMessage(role='user', content='Hello')]
response = await backend.generate_response(messages)
print(response.message)
asyncio.run(test())
"
```
### Test Gemma
```bash
# Test local Gemma
MODEL_TYPE=local MODEL_NAME=google/gemma-2b-it python tests/test_api.py
# Test Gemma via Google AI
MODEL_TYPE=google MODEL_NAME=gemma-2-9b-it GOOGLE_API_KEY=your_key python tests/test_api.py
```
---
## π **Deployment Examples**
### HuggingFace Spaces (Free)
```yaml
# In your Space settings
MODEL_TYPE: local
MODEL_NAME: TinyLlama/TinyLlama-1.1B-Chat-v1.0
DEVICE: cpu
```
### HuggingFace Spaces (With API)
```yaml
# In your Space settings
MODEL_TYPE: google
MODEL_NAME: gemma-2-9b-it
GOOGLE_API_KEY: your_secret_key
```
### Docker Deployment
```bash
docker run -e MODEL_TYPE=minimax \
-e MINIMAX_API_KEY=your_key \
-e MINIMAX_API_URL=your_url \
-p 8000:7860 \
sema-chat-api
```
---
## π‘ **Pro Tips**
1. **Start Small**: Begin with TinyLlama for testing
2. **Use APIs for Production**: More reliable than local models
3. **Enable Streaming**: Better user experience
4. **Monitor Usage**: Track API costs and limits
5. **Have Fallbacks**: Configure multiple backends
6. **Test Thoroughly**: Use the provided test scripts
---
## π **Getting API Keys**
- **HuggingFace**: https://huggingface.co/settings/tokens
- **OpenAI**: https://platform.openai.com/api-keys
- **Anthropic**: https://console.anthropic.com/
- **Google AI**: https://aistudio.google.com/
- **MiniMax**: Contact MiniMax for API access
---
**Your architecture is now ready for both MiniMax and Gemma! π**
|