# -*- coding: utf-8 -*- """batch aesthetics predictor v2 - release.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1zTrHop7pStcCwPAUP_nekK1rp6lcppYx """ # Commented out IPython magic to ensure Python compatibility. # %%capture # #@title Install environment & dl MLP { form-width: "100%", display-mode: "form" } # !pip install git+https://github.com/openai/CLIP.git # !pip install gradio~=3.18.0 # #!pip install torch==1.13.1#+cu116 # !pip install pytorch-lightning~=2.0.1 # !wget -nc https://huggingface.co/spaces/Seedmanc/batch-laion-aesthetic-predictor/resolve/main/sac%2Blogos%2Bava1-l14-linearMSE.pth #@title CLIP dl & init { run: "auto", vertical-output: true, form-width: "25%", display-mode: "form" } checkpoint = "ViT-L/14" #@param ["ViT-L/14", "ViT-L/14@336px"] import numpy as np import torch import pytorch_lightning as pl import torch.nn as nn import clip import time global prev_time global isCpu # if you changed the MLP architecture during training, change it also here: class MLP(pl.LightningModule): def __init__(self, input_size, xcol='emb', ycol='avg_rating'): super().__init__() self.input_size = input_size self.xcol = xcol self.ycol = ycol self.layers = nn.Sequential( nn.Linear(self.input_size, 1024), #nn.ReLU(), nn.Dropout(0.2), nn.Linear(1024, 128), #nn.ReLU(), nn.Dropout(0.2), nn.Linear(128, 64), #nn.ReLU(), nn.Dropout(0.1), nn.Linear(64, 16), #nn.ReLU(), nn.Linear(16, 1) ) def forward(self, x): return self.layers(x) def normalized(a, axis=-1, order=2): l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) l2[l2 == 0] = 1 return a / np.expand_dims(l2, axis) def load_models(): model = MLP(768) global device device = "cuda" if torch.cuda.is_available() else "cpu" global isCpu isCpu = device == "cpu" s = torch.load("sac+logos+ava1-l14-linearMSE.pth", map_location=device) model.load_state_dict(s) model.to(device) model.eval() model2, preprocess = clip.load(checkpoint, device=device, jit=True) model_dict = {} model_dict['classifier'] = model model_dict['clip_model'] = model2 model_dict['clip_preprocess'] = preprocess model_dict['device'] = device return model_dict if __name__ == '__main__': print('\tinit models') global model_dict prev_time = time.time() model_dict = load_models() print('model load', time.time() - prev_time) description = f""" ## Batch Image Aesthetic Predictor 0. Based on https://huggingface.co/spaces/Geonmo/laion-aesthetic-predictor, I just expanded the GUI & added stats. 1. This model is designed by adding five MLP layers on top of (frozen) CLIP **{checkpoint}** checkpoint and only the MLP layers are fine-tuned with a lot of images by a regression loss term such as MSE and MAE. 2. Output is bounded from 0 to 10. The higher the better. 3. The MLP being used currently is: **sac+logos+ava1-l14-linearMSE.pth** trained on 224x224 images. 4. Running on **{device}**{', be patient. Progressive output & immediate stats are available.' if isCpu else '. Batch mode enabled, results after completion.'} 5. Please don't click 'Submit' again during the processing, it'll mess things up. To stop processing, clear the file input. If the results are missing from the stats or export areas at the end, sort the table by any header & wait. {'6. The MLP was not retrained for this CLIP checkpoint, correct results are not guaranteed. It is also 2x slower.' if checkpoint != "ViT-L/14" else ''} """ #@title 👁️⃤ { run: "auto", form-width: "15%" } global predict#or writeClip = False #param {type:"boolean"} import os from PIL import Image if writeClip: #disabled in v1 import torchvision os.makedirs('CLIPped', exist_ok=True) def predict(image): img_input = model_dict['clip_preprocess'](Image.open(image)) clipped = None if writeClip: clipped = img_input image_input = img_input.unsqueeze(0).to(model_dict['device']) #try batch with torch.no_grad(): image_features = model_dict['clip_model'].encode_image(image_input) if model_dict['device'] == 'cuda': # add TPU support? im_emb_arr = normalized(image_features.detach().cpu().numpy()) im_emb = torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.cuda.FloatTensor) else: im_emb_arr = normalized(image_features.detach().numpy()) im_emb = torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.FloatTensor) prediction = model_dict['classifier'](im_emb) score = prediction.item() #optimize? return score, clipped #@title Wrapper & stats { form-width: "10%" } DEBUG = True #@param {type:"boolean"} autoclearLog = True #@param {type:"boolean"} import csv import sys import gradio as gr if DEBUG: print(gr.__version__) # def defStats(): return {'Max':{}, 'Max - min': {}} global Ready global avgScore global eta global speed global canPoll canPoll=Ready =False eta = avgScore = None speed = 0 Stats = defStats() global default_mode default_mode = list(Stats.keys())[1] def log(x = '', y = None): # debug only if not DEBUG: return x global prev_time print(f"<\033[97m{sys._getframe().f_back.f_code.co_name}\033[96m>:") if x: print(time.strftime('%M:%S '), x, round(time.time() - prev_time, 3), '\033[0m') if y: print(' extra: ', y, '\033[0m') prev_time = time.time() return x def pollStatus(table=[]): ### TODO idk what to do time.sleep(1) spd = speed and (f'{round(speed,1)} s/f' if speed >= 1 else f'{round(1/speed,1)} f/s') stext = f' Avg speed: {spd}.' if speed else '' etext = f' ETA: {eta} {"s." if type(eta) == int else ""}' if eta else '' atext = f'Running average: {avgScore}.' if avgScore else '' return f"[{time.strftime('%M:%S')}] {' Ready.' if not atext else ''} {atext} {etext} {stext}" if canPoll else 'idle' def switch_stats(mode): global default_mode default_mode = mode if mode else 'Max' return Stats[default_mode] def writeStats(labels): with open('stats.csv', 'w', newline='') as f: writer = csv.writer(f) log('actual write stats', labels and labels.values()) # writer.writerow(gr.utils.sanitize_list_for_csv(labels.keys())) writer.writerow(gr.utils.sanitize_list_for_csv(labels.values())) # MAIN ################################################################ def batch_predict(files=None, progress=gr.Progress()): #=> stats_toggle, stats_output, table_output, submit_btn run_time = time.time() if files and len(files) > 1: global eta eta = 'calculating...' results = list() log('has file(s)?', files and files[0]) global Stats global Ready Stats = defStats() if files is None: log('empty load') yield gr.update(), None, None, gr.update() log('ABORT') return else: maxSteps = min(len(files), 3) if isCpu else len(files) log('good2go') yield gr.update(visible=False), gr.update(visible=False), None, gr.update(variant="secondary") progress((1, maxSteps), unit='', desc='Importing...') clearStats() log('start the main loop') times=list() clips=list() for idx,file in enumerate(files, start=1): prev_time = time.time() score, clipped = predict(file) if not Ready: # the solution to the interruption bug, do not remove # return results.append([file.orig_name, round(score, 5), None]) if writeClip: #disabled in v1 clips.append((clipped, file.orig_name)) times.append(time.time() - prev_time) #simplify asyncThreshold = 1 if isCpu else len(files)-1 if (idx <= asyncThreshold): progress((idx+1, maxSteps), unit='', desc='Starting...' if isCpu else 'Working...') if (idx > asyncThreshold) and (idx < len(files)): # === False if not isCpu global avgScore global speed speed = np.mean(times) avgScore = statistics(results, False) eta = round(speed*(len(files)-idx+1)) # +1 or [1::]? log(idx) yield gr.update(), None, results, gr.update() table_data = results if DEBUG: print('RUN time', time.time() - run_time, 'avg', np.mean(times)) # if len(results) > 1: eta = 'finishing...' log('finishing') stats = statistics(results) for i, row in enumerate(table_data): table_data[i][2] = round((row[1] - stats['AVG'])**2, 4) # pylint: disable=report-general-type-issues writeStats(stats) log('|2|', table_data) # yield gr.update(visible=True), gr.update(value=switch_stats(default_mode), visible=True), table_data, gr.update(variant="primary") else: log('I', table_data) # yield gr.update(visible=False), gr.update(value=None, visible=False), table_data, gr.update(variant="primary") # avgScore = None if writeClip: #supposedly runs async w/o delaying the results? disabled in v1 anyway log('beforeWrite') for c,f in clips: torchvision.utils.save_image(c, 'CLIPped/'+f+'.png', normalize=True) log('afterWrite') log('Exit main loop') speed = (time.time() - run_time)/len(files) # /main ##################################################################### def statistics(results, full=True): array = np.array(results).T[1].astype(float) max = np.max(array) avg = round(array.mean(), 3) if (not full): return avg med = round(np.median(array), 3) min = array.min() std = round(array.std(), 4) cov = round(std/avg*100, 2) rng = round(max-min, 3) range = max-min Stats['Max'][f'MAX: {round(max, 3)}'] = 1 Stats['Max'][f'min: {round(min, 3)}'] = min/max Stats['Max'][f"CoV: {cov}%"] = std/max Stats['Max'][f'AVG: {avg}'] = avg/max Stats['Max'][f'Med: {med}'] = med/max Stats['Max'][f'M-m: {rng}'] = range/max # TODO can this be shortened? if (range == 0): range = 1 Stats['Max - min'][f'MAX: {round(max, 3)}'] = 1 Stats['Max - min'][f'min: {round(min, 3)}'] = 0 Stats['Max - min'][f"CoV: {cov}%"] = std/range Stats['Max - min'][f'AVG: {avg}'] = (avg-min)/range Stats['Max - min'][f'Med: {med}'] = (med-min)/range Stats['Max - min'][f'M-m: {rng}'] = rng/max return dict(zip(('AVG','CoV','M-m','min','Med','MAX'), (avg, cov, rng, round(min,3), med, round(max,3)))) def clearStats(): log('clst too many calls?') # for root, dirs, files in os.walk('.'): for file in files: if (file.startswith(('scores','stats'))): # TODO separate folder, names? os.remove(file) def scan(): r = ['scores.csv', 'stats.csv'] return [x for x in r if os.path.isfile(x)] # buggy as fuck def writeScores(table, files): # => csv_output, stats_output, stats_toggle statsVisible = False rows = table and table['data'] log('Entering the scores writer', 'from table change' if files and table else None) showStats = (gr.update(visible=statsVisible) for x in range(0,2)) # add full return statement? if files is None: log('No files, exiting writer')# resetStatus('from table') # refactor return [gr.update(value=scan()), *list(showStats)] ###### def writes(tbl): with open('scores.csv', 'w', newline='') as f: #try tsv, json writer = csv.writer(f) log('Actual saving scores', len(tbl['data'])) # writer.writerow(gr.utils.sanitize_list_for_csv(tbl['headers'])) writer.writerows(gr.utils.sanitize_list_for_csv(tbl['data'])) ###### if table and any([x for x in rows[0]]): if (len(rows) > 1): statsVisible = len(rows) >= len(files) if statsVisible: writes(table) log('Updating two', 'finished') # global eta eta = 0 return [gr.update(value=scan()), *list(showStats)] else: statsVisible = False if (len(files) == 1): writes(table) log('updating 1') # return [gr.update(value=scan()), *list(showStats)] log('Not ready for writing yet, exiting.', f'total files: {files and len(files)}, but ready rows: {rows and len(rows)}') return [gr.update(value=scan()), *list(showStats)] #@title GUI { vertical-output: true, form-width: "50%", display-mode: "both" } tableQueued_False = False #@param {type:"boolean"} queueConcurrency_2 = 10 #@param {type:"integer", min:1} queueUpdateInterval_0 = 0 #@param {type:"slider", min:0, max:10, step:0.2} #@markdown tableQueued == True + queueConcurrency == 1 guarantees stalling on CPU #@markdown #@markdown tableQueued - unknown effect on speed or stability #@markdown #@markdown queueConcurrency > 1 - technically should improve speed? #@markdown #@markdown queueUpdateInterval - in (0, 1] slows down processing, otherwise seems useless. #@markdown prevent_thread_lock - keep the "busy cell" behavior of debug mode without it to avoid multiple instances running in parallel; #@markdown effects on speed & stability unknown if DEBUG: import shutil #i doshutilsya import subprocess if writeClip: # disabled in v1 for root, dirs, files in os.walk('CLIPped'): for file in files: os.remove('CLIPped/'+file) if DEBUG: for root, dirs, files in os.walk('../tmp'): #debug only for dir in dirs: shutil.rmtree('../tmp/'+dir) for file in files: os.remove('../tmp/'+file) #/debug def resetStatus(msg = 'clear'): global avgScore global eta global speed avgScore = None eta = None speed = 0 log(msg) if msg != 'clear': clearStats() print('\n') Css = ''' #lbl .output-class { background-color: transparent; max-height: 0; color: transparent; padding: var(--size-3); } #add_img .file-preview .file td:first-child { overflow-wrap: anywhere; } #csv_out .file-preview { margin-bottom: var(--size-4); overflow-x: visible; } #tbl_out tbody .cell-wrap:first-child { overflow-wrap: anywhere; } button#sbmt:focus:not(:active) { opacity: 0.75; pointer-events: none; } #mid_col :not(#csv_out) .wrap.default { opacity: 0!important; } ''' def toggleRun(files): # => submit, dataframe, status global Ready Ready = files is not None log('Toggle', Ready) global canPoll canPoll = Ready if not Ready: if eta: log('INTERRUPTED at ss remaining (extra)', eta) resetStatus() if DEBUG and autoclearLog: subprocess.call('clear') print('\r') clearStats() return gr.Button.update(variant='primary' if Ready else 'secondary'), None, pollStatus() # ''', interactive=True''') log('GUI start') blks = gr.Blocks(analytics_enabled=False, title="Batch Image Aesthetic Predictor", css=Css) with blks as demo: with gr.Accordion('README', open=False): gr.Markdown(description) with gr.Row().style(equal_height=False): with gr.Column(scale=2): imageinput = gr.Files(file_types=["image"], label="Add images", elem_id="addimg") submit_button = gr.Button('Submit', variant="secondary", elem_id='sbmt') #TODO interactive with gr.Column(variant="compact", min_width=256, elem_id="mid_col"): stats_toggle = gr.Radio(list(Stats.keys()), show_label=True, label='Stats relative to:', value=default_mode, visible=False) stats_output = gr.Label(label='Stats', visible=False, elem_id="lbl") csv_output = gr.File( label="Export", elem_id='csv_out' ) with gr.Column(scale=2): table_output = gr.Dataframe(headers=['Image', 'Score', 'MSE'], max_rows=15, overflow_row_behaviour="paginate", interactive=False, wrap=True, elem_id="tbl_out") status = gr.Textbox(pollStatus(), max_lines=1, show_label=False, placeholder='Status bar').style(container=False) status.change(pollStatus, None, status, show_progress= False, queue=False) tch = table_output.change(writeScores, [table_output, imageinput], [csv_output, stats_output, stats_toggle], preprocess=False, queue= tableQueued_False, show_progress=not isCpu) stats_toggle.change(switch_stats, [stats_toggle], [stats_output], queue=False, show_progress=False) run = submit_button.click(batch_predict, imageinput, [stats_toggle, stats_output, table_output, submit_button], queue=True, scroll_to_output=True) #imageinput.clear(reset, [imageinput], [table_output], queue=False, show_progress=True, preprocess=False) imageinput.change(toggleRun, imageinput, [submit_button, table_output, status], queue= False, cancels=[run], show_progress=False) # # try .then() if DEBUG: demo.load(lambda: log('load'), queue=not True, show_progress=False) demo.queue(api_open= not DEBUG, status_update_rate='auto' if queueUpdateInterval_0 == 0 else queueUpdateInterval_0 , concurrency_count=max(queueConcurrency_2, 1)) log('Prelaunch') demo.launch(debug=DEBUG, quiet=not DEBUG, show_error=True) #demo.close()