unsloth / app.py
Sebastien De Greef
Add auth button
c0f4fad
raw
history blame
16.5 kB
import gradio as gr
from huggingface_hub import HfApi
from unsloth import FastLanguageModel
from trl import SFTTrainer
from transformers import TrainingArguments, TrainerCallback
from unsloth import is_bfloat16_supported
import torch
from datasets import load_dataset
import logging
from io import StringIO
import time
import asyncio
# Create a string stream to capture log messages
log_stream = StringIO()
# Configure logging to use the string stream
logging.basicConfig(stream=log_stream, level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
log_contents = log_stream.getvalue()
print(log_contents)
logger.debug('This is a debug message')
hf_user = None
hfApi = HfApi()
try:
hf_user = hfApi.whoami()
except Exception as e:
hf_user = "not logged in"
# Dropdown options
model_options = [
"unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster!
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster!
"unsloth/llama-3-8b-Instruct-bnb-4bit",
"unsloth/llama-3-70b-bnb-4bit",
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster!
"unsloth/Phi-3-medium-4k-instruct",
"unsloth/mistral-7b-bnb-4bit",
"unsloth/gemma-2-9b-bnb-4bit",
"unsloth/gemma-2-27b-bnb-4bit", # Gemma 2x faster!
]
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
model=None
tokenizer = None
dataset = None
max_seq_length = 2048
class PrinterCallback(TrainerCallback):
step = 0
def __init__(self, progress):
self.progress = progress
def on_log(self, args, state, control, logs=None, **kwargs):
_ = logs.pop("total_flos", None)
if state.is_local_process_zero:
#print(logs)
pass
def on_step_end(self, args, state, control, **kwargs):
if state.is_local_process_zero:
self.step = state.global_step
self.progress(self.step/60, desc=f"Training {self.step}/60")
#print("**Step ", state.global_step)
def formatting_prompts_func(examples, prompt):
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
# Must add EOS_TOKEN, otherwise your generation will go on forever!
text = prompt.format(instruction, input, output) + EOS_TOKEN
texts.append(text)
return { "text" : texts, }
def load_model(initial_model_name, load_in_4bit, max_sequence_length):
global model, tokenizer, max_seq_length
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
max_seq_length = max_sequence_length
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = initial_model_name,
max_seq_length = max_sequence_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
log_contents = log_stream.getvalue()
print(log_contents)
return f"Model {initial_model_name} loaded, using {max_sequence_length} as max sequence length.", gr.update(visible=True, interactive=True), gr.update(interactive=True),gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
def load_data(dataset_name, data_template_style, data_template):
global dataset
dataset = load_dataset(dataset_name, split = "train")
dataset = dataset.map(lambda examples: formatting_prompts_func(examples, data_template), batched=True)
return f"Data loaded {len(dataset)} records loaded.", gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True)
def inference(prompt, input_text):
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
prompt.format(
"Continue the fibonnaci sequence.", # instruction
"1, 1, 2, 3, 5, 8", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
result = tokenizer.batch_decode(outputs)
return result[0], gr.update(visible=True, interactive=True)
def save_model(model_name, hub_model_name, hub_token, gguf_16bit, gguf_8bit, gguf_4bit, gguf_custom, gguf_custom_value, merge_16bit, merge_4bit, just_lora, push_to_hub):
global model, tokenizer
if gguf_custom:
gguf_custom_value = gguf_custom_value
else:
gguf_custom_value = None
if gguf_16bit:
gguf = "f16"
elif gguf_8bit:
gguf = "q8_0"
elif gguf_4bit:
gguf = "q4_k_m"
else:
gguf = None
if merge_16bit:
merge = "16bit"
elif merge_4bit:
merge = "4bit"
elif just_lora:
merge = "lora"
else:
merge = None
#model.push_to_hub_gguf("hf/model", tokenizer, quantization_method = "f16", token = "")
if push_to_hub:
model.push_to_hub_gguf(hub_model_name, tokenizer, quantization_method=gguf, token=hub_token)
return "Model saved", gr.update(visible=True, interactive=True)
# Create the Gradio interface
with gr.Blocks(title="Unsloth fine-tuning") as demo:
with gr.Column():
gr.Image("unsloth.png", width="300px", interactive=False, show_download_button=False, show_label=False)
gr.LoginButton()
with gr.Column():
gr.Markdown(f"**User:** {hf_user}\n\n**GPU Information:** {gpu_stats.name} ({max_memory} GB)\n\n[Unsloth Docs](http://docs.unsloth.com/)\n\n[Unsloth GitHub](https://github.com/unslothai/unsloth)")
with gr.Tab("Base Model Parameters"):
with gr.Row():
initial_model_name = gr.Dropdown(choices=model_options, label="Select Base Model", allow_custom_value=True)
load_in_4bit = gr.Checkbox(label="Load 4bit model", value=True)
gr.Markdown("### Target Model Parameters")
with gr.Row():
max_sequence_length = gr.Slider(minimum=128, value=512, step=64, maximum=128*1024, interactive=True, label="Max Sequence Length")
load_btn = gr.Button("Load")
output = gr.Textbox(label="Model Load Status", value="Model not loaded", interactive=False)
gr.Markdown("---")
with gr.Tab("Data Preparation"):
with gr.Row():
dataset_name = gr.Textbox(label="Dataset Name", value="yahma/alpaca-cleaned")
data_template_style = gr.Dropdown(label="Template", choices=["alpaca","custom"], value="alpaca", allow_custom_value=True)
with gr.Row():
data_template = gr.TextArea(label="Data Template", value="""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}""")
gr.Markdown("---")
output_load_data = gr.Textbox(label="Data Load Status", value="Data not loaded", interactive=False)
load_data_btn = gr.Button("Load Dataset", interactive=True)
load_data_btn.click(load_data, inputs=[dataset_name, data_template_style, data_template], outputs=[output_load_data, load_data_btn])
with gr.Tab("Fine-Tuning"):
gr.Markdown("""### Fine-Tuned Model Parameters""")
with gr.Row():
model_name = gr.Textbox(label="Model Name", value=initial_model_name.value, interactive=True)
gr.Markdown("""### Lora Parameters""")
with gr.Row():
lora_r = gr.Number(label="R", value=16, interactive=True)
lora_alpha = gr.Number(label="Lora Alpha", value=16, interactive=True)
lora_dropout = gr.Number(label="Lora Dropout", value=0.1, interactive=True)
gr.Markdown("---")
gr.Markdown("""### Training Parameters""")
with gr.Row():
with gr.Column():
with gr.Row():
per_device_train_batch_size = gr.Number(label="Per Device Train Batch Size", value=2, interactive=True)
warmup_steps = gr.Number(label="Warmup Steps", value=5, interactive=True)
max_steps = gr.Number(label="Max Steps", value=60, interactive=True)
gradient_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=4, interactive=True)
with gr.Row():
logging_steps = gr.Number(label="Logging Steps", value=1, interactive=True)
log_to_tensorboard = gr.Checkbox(label="Log to Tensorboard", value=True, interactive=True)
with gr.Row():
optim = gr.Dropdown(choices=["adamw_8bit", "adamw", "sgd"], label="Optimizer", value="adamw_8bit")
learning_rate = gr.Number(label="Learning Rate", value=2e-4, interactive=True)
with gr.Row():
weight_decay = gr.Number(label="Weight Decay", value=0.01, interactive=True)
lr_scheduler_type = gr.Dropdown(choices=["linear", "cosine", "constant"], label="LR Scheduler Type", value="linear")
gr.Markdown("---")
with gr.Row():
seed = gr.Number(label="Seed", value=3407, interactive=True)
output_dir = gr.Textbox(label="Output Directory", value="outputs", interactive=True)
gr.Markdown("---")
train_output = gr.Textbox(label="Training Status", value="Model not trained", interactive=False)
train_btn = gr.Button("Train", visible=True)
def train_model(model_name: str, lora_r: int, lora_alpha: int, lora_dropout: float, per_device_train_batch_size: int, warmup_steps: int, max_steps: int,
gradient_accumulation_steps: int, logging_steps: int, log_to_tensorboard: bool, optim, learning_rate, weight_decay, lr_scheduler_type, seed: int, output_dir, progress= gr.Progress()):
global model, tokenizer
print(f"$$$ Training model {model_name} with {lora_r} R, {lora_alpha} alpha, {lora_dropout} dropout, {per_device_train_batch_size} per device train batch size, {warmup_steps} warmup steps, {max_steps} max steps, {gradient_accumulation_steps} gradient accumulation steps, {logging_steps} logging steps, {log_to_tensorboard} log to tensorboard, {optim} optimizer, {learning_rate} learning rate, {weight_decay} weight decay, {lr_scheduler_type} lr scheduler type, {seed} seed, {output_dir} output dir")
iseed = seed
model = FastLanguageModel.get_peft_model(
model,
r = lora_r,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = lora_alpha,
lora_dropout = lora_dropout,
bias = "none",
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state=iseed,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
progress(0.0, desc="Loading Trainer")
time.sleep(1)
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 2,
packing = False, # Can make training 5x faster for short sequences.
callbacks = [PrinterCallback(progress)],
args = TrainingArguments(
per_device_train_batch_size = per_device_train_batch_size,
gradient_accumulation_steps = gradient_accumulation_steps,
warmup_steps = warmup_steps,
max_steps = 60, # Set num_train_epochs = 1 for full training runs
learning_rate = learning_rate,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = logging_steps,
optim = "adamw_8bit",
weight_decay = weight_decay,
lr_scheduler_type = "linear",
seed = iseed,
report_to="tensorboard" if log_to_tensorboard else None,
output_dir = output_dir
),
)
trainer.train()
progress(1, desc="Training completed")
time.sleep(1)
return "Model trained 100%",gr.update(visible=True, interactive=False), gr.update(visible=True, interactive=True), gr.update(interactive=True)
train_btn.click(train_model, inputs=[model_name, lora_r, lora_alpha, lora_dropout, per_device_train_batch_size, warmup_steps, max_steps, gradient_accumulation_steps, logging_steps, log_to_tensorboard, optim, learning_rate, weight_decay, lr_scheduler_type, seed, output_dir], outputs=[train_output, train_btn])
with gr.Tab("Save & Push Options"):
with gr.Row():
gr.Markdown("### Merging Options")
with gr.Column():
merge_16bit = gr.Checkbox(label="Merge to 16bit", value=False, interactive=True)
merge_4bit = gr.Checkbox(label="Merge to 4bit", value=False, interactive=True)
just_lora = gr.Checkbox(label="Just LoRA Adapter", value=False, interactive=True)
gr.Markdown("---")
with gr.Row():
gr.Markdown("### GGUF Options")
with gr.Column():
gguf_16bit = gr.Checkbox(label="Quantize to f16", value=False, interactive=True)
gguf_8bit = gr.Checkbox(label="Quantize to 8bit (Q8_0)", value=False, interactive=True)
gguf_4bit = gr.Checkbox(label="Quantize to 4bit (q4_k_m)", value=False, interactive=True)
with gr.Column():
gguf_custom = gr.Checkbox(label="Custom", value=False, interactive=True)
gguf_custom_value = gr.Textbox(label="", value="Q5_K", interactive=True)
gr.Markdown("---")
with gr.Row():
gr.Markdown("### Hugging Face Hub Options")
push_to_hub = gr.Checkbox(label="Push to Hub", value=False, interactive=True)
with gr.Column():
hub_model_name = gr.Textbox(label="Hub Model Name", value=f"username/model_name", interactive=True)
hub_token = gr.Textbox(label="Hub Token", interactive=True, type="password")
gr.Markdown("---")
# with gr.Row():
# gr.Markdown("### Ollama options")
# with gr.Column():
# ollama_create_local = gr.Checkbox(label="Create in Ollama (local)", value=False, interactive=True)
# ollama_push_to_hub = gr.Checkbox(label="Push to Ollama", value=False, interactive=True)
# with gr.Column():
# ollama_model_name = gr.Textbox(label="Ollama Model Name", value="user/model_name")
# ollama_pub_key = gr.Button("Ollama Pub Key")
save_output = gr.Markdown("---")
save_button = gr.Button("Save Model", visible=True, interactive=True)
save_button.click(save_model, inputs=[model_name, hub_model_name, hub_token, gguf_16bit, gguf_8bit, gguf_4bit, gguf_custom, gguf_custom_value, merge_16bit, merge_4bit, just_lora, push_to_hub], outputs=[save_output, save_button])
with gr.Tab("Inference"):
with gr.Row():
input_text = gr.Textbox(label="Input Text", lines=4, value="""\
Continue the fibonnaci sequence.
# instruction
1, 1, 2, 3, 5, 8
# input
""", interactive=True)
output_text = gr.Textbox(label="Output Text", lines=4, value="", interactive=False)
inference_button = gr.Button("Inference", visible=True, interactive=True)
inference_button.click(inference, inputs=[data_template, input_text], outputs=[output_text, inference_button])
load_btn.click(load_model, inputs=[initial_model_name, load_in_4bit, max_sequence_length], outputs=[output, load_btn, train_btn, initial_model_name, load_in_4bit, max_sequence_length])
demo.launch()