|
import gradio as gr |
|
from huggingface_hub import HfApi |
|
from unsloth import FastLanguageModel |
|
from trl import SFTTrainer |
|
from transformers import TrainingArguments, TrainerCallback |
|
from unsloth import is_bfloat16_supported |
|
import torch |
|
from datasets import load_dataset |
|
import logging |
|
from io import StringIO |
|
import time |
|
import asyncio |
|
|
|
log_stream = StringIO() |
|
|
|
|
|
logging.basicConfig(stream=log_stream, level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
log_contents = log_stream.getvalue() |
|
print(log_contents) |
|
logger.debug('This is a debug message') |
|
|
|
hf_user = None |
|
hfApi = HfApi() |
|
try: |
|
hf_user = hfApi.whoami() |
|
except Exception as e: |
|
hf_user = "not logged in" |
|
|
|
|
|
|
|
model_options = [ |
|
"unsloth/mistral-7b-v0.3-bnb-4bit", |
|
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit", |
|
"unsloth/llama-3-8b-bnb-4bit", |
|
"unsloth/llama-3-8b-Instruct-bnb-4bit", |
|
"unsloth/llama-3-70b-bnb-4bit", |
|
"unsloth/Phi-3-mini-4k-instruct", |
|
"unsloth/Phi-3-medium-4k-instruct", |
|
"unsloth/mistral-7b-bnb-4bit", |
|
"unsloth/gemma-2-9b-bnb-4bit", |
|
"unsloth/gemma-2-27b-bnb-4bit", |
|
] |
|
gpu_stats = torch.cuda.get_device_properties(0) |
|
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) |
|
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) |
|
|
|
model=None |
|
tokenizer = None |
|
dataset = None |
|
max_seq_length = 2048 |
|
|
|
class PrinterCallback(TrainerCallback): |
|
step = 0 |
|
def __init__(self, progress): |
|
self.progress = progress |
|
def on_log(self, args, state, control, logs=None, **kwargs): |
|
_ = logs.pop("total_flos", None) |
|
if state.is_local_process_zero: |
|
|
|
pass |
|
def on_step_end(self, args, state, control, **kwargs): |
|
if state.is_local_process_zero: |
|
self.step = state.global_step |
|
self.progress(self.step/60, desc=f"Training {self.step}/60") |
|
|
|
|
|
|
|
|
|
def formatting_prompts_func(examples, prompt): |
|
EOS_TOKEN = tokenizer.eos_token |
|
instructions = examples["instruction"] |
|
inputs = examples["input"] |
|
outputs = examples["output"] |
|
texts = [] |
|
for instruction, input, output in zip(instructions, inputs, outputs): |
|
|
|
text = prompt.format(instruction, input, output) + EOS_TOKEN |
|
texts.append(text) |
|
return { "text" : texts, } |
|
|
|
def load_model(initial_model_name, load_in_4bit, max_sequence_length): |
|
global model, tokenizer, max_seq_length |
|
dtype = None |
|
max_seq_length = max_sequence_length |
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = initial_model_name, |
|
max_seq_length = max_sequence_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
|
|
) |
|
log_contents = log_stream.getvalue() |
|
print(log_contents) |
|
return f"Model {initial_model_name} loaded, using {max_sequence_length} as max sequence length.", gr.update(visible=True, interactive=True), gr.update(interactive=True),gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False) |
|
|
|
def load_data(dataset_name, data_template_style, data_template): |
|
global dataset |
|
dataset = load_dataset(dataset_name, split = "train") |
|
dataset = dataset.map(lambda examples: formatting_prompts_func(examples, data_template), batched=True) |
|
return f"Data loaded {len(dataset)} records loaded.", gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True) |
|
|
|
def inference(prompt, input_text): |
|
FastLanguageModel.for_inference(model) |
|
inputs = tokenizer( |
|
[ |
|
prompt.format( |
|
"Continue the fibonnaci sequence.", |
|
"1, 1, 2, 3, 5, 8", |
|
"", |
|
) |
|
], return_tensors = "pt").to("cuda") |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) |
|
result = tokenizer.batch_decode(outputs) |
|
return result[0], gr.update(visible=True, interactive=True) |
|
|
|
def save_model(model_name, hub_model_name, hub_token, gguf_16bit, gguf_8bit, gguf_4bit, gguf_custom, gguf_custom_value, merge_16bit, merge_4bit, just_lora, push_to_hub): |
|
global model, tokenizer |
|
if gguf_custom: |
|
gguf_custom_value = gguf_custom_value |
|
else: |
|
gguf_custom_value = None |
|
|
|
if gguf_16bit: |
|
gguf = "f16" |
|
elif gguf_8bit: |
|
gguf = "q8_0" |
|
elif gguf_4bit: |
|
gguf = "q4_k_m" |
|
else: |
|
gguf = None |
|
|
|
if merge_16bit: |
|
merge = "16bit" |
|
elif merge_4bit: |
|
merge = "4bit" |
|
elif just_lora: |
|
merge = "lora" |
|
else: |
|
merge = None |
|
|
|
|
|
if push_to_hub: |
|
model.push_to_hub_gguf(hub_model_name, tokenizer, quantization_method=gguf, token=hub_token) |
|
return "Model saved", gr.update(visible=True, interactive=True) |
|
|
|
|
|
with gr.Blocks(title="Unsloth fine-tuning") as demo: |
|
with gr.Column(): |
|
gr.Image("unsloth.png", width="300px", interactive=False, show_download_button=False, show_label=False) |
|
gr.LoginButton() |
|
with gr.Column(): |
|
gr.Markdown(f"**User:** {hf_user}\n\n**GPU Information:** {gpu_stats.name} ({max_memory} GB)\n\n[Unsloth Docs](http://docs.unsloth.com/)\n\n[Unsloth GitHub](https://github.com/unslothai/unsloth)") |
|
with gr.Tab("Base Model Parameters"): |
|
|
|
with gr.Row(): |
|
initial_model_name = gr.Dropdown(choices=model_options, label="Select Base Model", allow_custom_value=True) |
|
load_in_4bit = gr.Checkbox(label="Load 4bit model", value=True) |
|
|
|
gr.Markdown("### Target Model Parameters") |
|
with gr.Row(): |
|
max_sequence_length = gr.Slider(minimum=128, value=512, step=64, maximum=128*1024, interactive=True, label="Max Sequence Length") |
|
load_btn = gr.Button("Load") |
|
output = gr.Textbox(label="Model Load Status", value="Model not loaded", interactive=False) |
|
gr.Markdown("---") |
|
|
|
with gr.Tab("Data Preparation"): |
|
with gr.Row(): |
|
dataset_name = gr.Textbox(label="Dataset Name", value="yahma/alpaca-cleaned") |
|
data_template_style = gr.Dropdown(label="Template", choices=["alpaca","custom"], value="alpaca", allow_custom_value=True) |
|
with gr.Row(): |
|
data_template = gr.TextArea(label="Data Template", value="""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{} |
|
|
|
### Input: |
|
{} |
|
|
|
### Response: |
|
{}""") |
|
gr.Markdown("---") |
|
output_load_data = gr.Textbox(label="Data Load Status", value="Data not loaded", interactive=False) |
|
load_data_btn = gr.Button("Load Dataset", interactive=True) |
|
load_data_btn.click(load_data, inputs=[dataset_name, data_template_style, data_template], outputs=[output_load_data, load_data_btn]) |
|
|
|
with gr.Tab("Fine-Tuning"): |
|
gr.Markdown("""### Fine-Tuned Model Parameters""") |
|
with gr.Row(): |
|
model_name = gr.Textbox(label="Model Name", value=initial_model_name.value, interactive=True) |
|
|
|
gr.Markdown("""### Lora Parameters""") |
|
|
|
with gr.Row(): |
|
lora_r = gr.Number(label="R", value=16, interactive=True) |
|
lora_alpha = gr.Number(label="Lora Alpha", value=16, interactive=True) |
|
lora_dropout = gr.Number(label="Lora Dropout", value=0.1, interactive=True) |
|
|
|
gr.Markdown("---") |
|
gr.Markdown("""### Training Parameters""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
per_device_train_batch_size = gr.Number(label="Per Device Train Batch Size", value=2, interactive=True) |
|
warmup_steps = gr.Number(label="Warmup Steps", value=5, interactive=True) |
|
max_steps = gr.Number(label="Max Steps", value=60, interactive=True) |
|
gradient_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=4, interactive=True) |
|
with gr.Row(): |
|
logging_steps = gr.Number(label="Logging Steps", value=1, interactive=True) |
|
log_to_tensorboard = gr.Checkbox(label="Log to Tensorboard", value=True, interactive=True) |
|
|
|
with gr.Row(): |
|
optim = gr.Dropdown(choices=["adamw_8bit", "adamw", "sgd"], label="Optimizer", value="adamw_8bit") |
|
learning_rate = gr.Number(label="Learning Rate", value=2e-4, interactive=True) |
|
|
|
with gr.Row(): |
|
weight_decay = gr.Number(label="Weight Decay", value=0.01, interactive=True) |
|
lr_scheduler_type = gr.Dropdown(choices=["linear", "cosine", "constant"], label="LR Scheduler Type", value="linear") |
|
gr.Markdown("---") |
|
|
|
with gr.Row(): |
|
seed = gr.Number(label="Seed", value=3407, interactive=True) |
|
output_dir = gr.Textbox(label="Output Directory", value="outputs", interactive=True) |
|
gr.Markdown("---") |
|
|
|
train_output = gr.Textbox(label="Training Status", value="Model not trained", interactive=False) |
|
train_btn = gr.Button("Train", visible=True) |
|
|
|
def train_model(model_name: str, lora_r: int, lora_alpha: int, lora_dropout: float, per_device_train_batch_size: int, warmup_steps: int, max_steps: int, |
|
gradient_accumulation_steps: int, logging_steps: int, log_to_tensorboard: bool, optim, learning_rate, weight_decay, lr_scheduler_type, seed: int, output_dir, progress= gr.Progress()): |
|
global model, tokenizer |
|
print(f"$$$ Training model {model_name} with {lora_r} R, {lora_alpha} alpha, {lora_dropout} dropout, {per_device_train_batch_size} per device train batch size, {warmup_steps} warmup steps, {max_steps} max steps, {gradient_accumulation_steps} gradient accumulation steps, {logging_steps} logging steps, {log_to_tensorboard} log to tensorboard, {optim} optimizer, {learning_rate} learning rate, {weight_decay} weight decay, {lr_scheduler_type} lr scheduler type, {seed} seed, {output_dir} output dir") |
|
iseed = seed |
|
model = FastLanguageModel.get_peft_model( |
|
model, |
|
r = lora_r, |
|
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", |
|
"gate_proj", "up_proj", "down_proj",], |
|
lora_alpha = lora_alpha, |
|
lora_dropout = lora_dropout, |
|
bias = "none", |
|
use_gradient_checkpointing = "unsloth", |
|
random_state=iseed, |
|
use_rslora = False, |
|
loftq_config = None, |
|
) |
|
progress(0.0, desc="Loading Trainer") |
|
time.sleep(1) |
|
trainer = SFTTrainer( |
|
model = model, |
|
tokenizer = tokenizer, |
|
train_dataset = dataset, |
|
dataset_text_field = "text", |
|
max_seq_length = max_seq_length, |
|
dataset_num_proc = 2, |
|
packing = False, |
|
callbacks = [PrinterCallback(progress)], |
|
args = TrainingArguments( |
|
per_device_train_batch_size = per_device_train_batch_size, |
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
warmup_steps = warmup_steps, |
|
max_steps = 60, |
|
learning_rate = learning_rate, |
|
fp16 = not is_bfloat16_supported(), |
|
bf16 = is_bfloat16_supported(), |
|
logging_steps = logging_steps, |
|
optim = "adamw_8bit", |
|
weight_decay = weight_decay, |
|
lr_scheduler_type = "linear", |
|
seed = iseed, |
|
report_to="tensorboard" if log_to_tensorboard else None, |
|
output_dir = output_dir |
|
), |
|
) |
|
trainer.train() |
|
progress(1, desc="Training completed") |
|
time.sleep(1) |
|
return "Model trained 100%",gr.update(visible=True, interactive=False), gr.update(visible=True, interactive=True), gr.update(interactive=True) |
|
|
|
|
|
train_btn.click(train_model, inputs=[model_name, lora_r, lora_alpha, lora_dropout, per_device_train_batch_size, warmup_steps, max_steps, gradient_accumulation_steps, logging_steps, log_to_tensorboard, optim, learning_rate, weight_decay, lr_scheduler_type, seed, output_dir], outputs=[train_output, train_btn]) |
|
|
|
with gr.Tab("Save & Push Options"): |
|
|
|
|
|
|
|
with gr.Row(): |
|
gr.Markdown("### Merging Options") |
|
with gr.Column(): |
|
merge_16bit = gr.Checkbox(label="Merge to 16bit", value=False, interactive=True) |
|
merge_4bit = gr.Checkbox(label="Merge to 4bit", value=False, interactive=True) |
|
just_lora = gr.Checkbox(label="Just LoRA Adapter", value=False, interactive=True) |
|
gr.Markdown("---") |
|
|
|
with gr.Row(): |
|
gr.Markdown("### GGUF Options") |
|
with gr.Column(): |
|
gguf_16bit = gr.Checkbox(label="Quantize to f16", value=False, interactive=True) |
|
gguf_8bit = gr.Checkbox(label="Quantize to 8bit (Q8_0)", value=False, interactive=True) |
|
gguf_4bit = gr.Checkbox(label="Quantize to 4bit (q4_k_m)", value=False, interactive=True) |
|
with gr.Column(): |
|
gguf_custom = gr.Checkbox(label="Custom", value=False, interactive=True) |
|
gguf_custom_value = gr.Textbox(label="", value="Q5_K", interactive=True) |
|
gr.Markdown("---") |
|
|
|
with gr.Row(): |
|
gr.Markdown("### Hugging Face Hub Options") |
|
push_to_hub = gr.Checkbox(label="Push to Hub", value=False, interactive=True) |
|
with gr.Column(): |
|
hub_model_name = gr.Textbox(label="Hub Model Name", value=f"username/model_name", interactive=True) |
|
hub_token = gr.Textbox(label="Hub Token", interactive=True, type="password") |
|
gr.Markdown("---") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
save_output = gr.Markdown("---") |
|
save_button = gr.Button("Save Model", visible=True, interactive=True) |
|
save_button.click(save_model, inputs=[model_name, hub_model_name, hub_token, gguf_16bit, gguf_8bit, gguf_4bit, gguf_custom, gguf_custom_value, merge_16bit, merge_4bit, just_lora, push_to_hub], outputs=[save_output, save_button]) |
|
|
|
with gr.Tab("Inference"): |
|
with gr.Row(): |
|
input_text = gr.Textbox(label="Input Text", lines=4, value="""\ |
|
Continue the fibonnaci sequence. |
|
# instruction |
|
1, 1, 2, 3, 5, 8 |
|
# input |
|
""", interactive=True) |
|
output_text = gr.Textbox(label="Output Text", lines=4, value="", interactive=False) |
|
|
|
inference_button = gr.Button("Inference", visible=True, interactive=True) |
|
inference_button.click(inference, inputs=[data_template, input_text], outputs=[output_text, inference_button]) |
|
load_btn.click(load_model, inputs=[initial_model_name, load_in_4bit, max_sequence_length], outputs=[output, load_btn, train_btn, initial_model_name, load_in_4bit, max_sequence_length]) |
|
|
|
demo.launch() |
|
|