Spaces:
Paused
Paused
import gradio as gr | |
from diffusers import DiffusionPipeline | |
import torch | |
from PIL import Image | |
import spaces | |
# Load the pre-trained pipeline | |
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt-1-1") | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=lambda img: generate_video(img), | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Video(), | |
title="Stable Video Diffusion", | |
description="Upload an image to generate a video", | |
theme="soft" | |
) | |
# Define the function to generate the video | |
def generate_video(img): | |
# Convert the input image to a tensor | |
img_tensor = torch.tensor(img).unsqueeze(0) / 255.0 | |
# Run the pipeline to generate the video | |
output = pipeline(img_tensor) | |
# Extract the video frames from the output | |
video_frames = output["video_frames"] | |
# Convert the video frames to a video | |
video = [] | |
for frame in video_frames: | |
video.append(Image.fromarray(frame.detach().cpu().numpy())) | |
# Return the generated video | |
return video | |
# Launch the Gradio app | |
interface.launch() |