# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List, Tuple, Type import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from .mlp import MLPBlock class PromptEncoder(nn.Module): def __init__( self, embed_dim: int, image_embedding_size: Tuple[int, int], input_image_size: Tuple[int, int], ) -> None: """ Encodes prompts for input to SAM's mask decoder. Arguments: embed_dim (int): The prompts' embedding dimension image_embedding_size (tuple(int, int)): The spatial size of the image embedding, as (H, W). input_image_size (int): The padded size of the image as input to the image encoder, as (H, W). """ super().__init__() self.embed_dim = embed_dim self.input_image_size = input_image_size self.image_embedding_size = image_embedding_size self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) self.invalid_points = nn.Embedding(1, embed_dim) self.point_embeddings = nn.Embedding(1, embed_dim) self.bbox_top_left_embeddings = nn.Embedding(1, embed_dim) self.bbox_bottom_right_embeddings = nn.Embedding(1, embed_dim) def get_dense_pe(self) -> torch.Tensor: """ Returns the positional encoding used to encode point prompts, applied to a dense set of points the shape of the image encoding. Returns: torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w) """ return self.pe_layer(self.image_embedding_size).unsqueeze(0) def _embed_points( self, points: torch.Tensor, labels: torch.Tensor, ) -> torch.Tensor: """Embeds point prompts.""" points = points + 0.5 # Shift to center of pixel point_embedding = self.pe_layer.forward_with_coords( points, self.input_image_size ) invalid_label_ids = torch.eq(labels, -1)[:,:,None] point_label_ids = torch.eq(labels, 1)[:,:,None] topleft_label_ids = torch.eq(labels, 2)[:,:,None] bottomright_label_ids = torch.eq(labels, 3)[:,:,None] point_embedding = point_embedding + self.invalid_points.weight[:,None,:] * invalid_label_ids point_embedding = point_embedding + self.point_embeddings.weight[:,None,:] * point_label_ids point_embedding = point_embedding + self.bbox_top_left_embeddings.weight[:,None,:] * topleft_label_ids point_embedding = point_embedding + self.bbox_bottom_right_embeddings.weight[:,None,:] * bottomright_label_ids return point_embedding def forward( self, coords, labels, ) -> torch.Tensor: """ Embeds different types of prompts, returning both sparse and dense embeddings. Arguments: points: A tensor of shape [B, 2] labels: An integer tensor of shape [B] where each element is 1,2 or 3. Returns: torch.Tensor: sparse embeddings for the points and boxes, with shape BxNx(embed_dim), where N is determined by the number of input points and boxes. """ return self._embed_points(coords, labels) class PositionEmbeddingRandom(nn.Module): """ Positional encoding using random spatial frequencies. """ def __init__(self, num_pos_feats: int) -> None: super().__init__() self.register_buffer( "positional_encoding_gaussian_matrix", torch.randn((2, num_pos_feats)) ) def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: """Positionally encode points that are normalized to [0,1].""" # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape coords = 2 * coords - 1 coords = coords @ self.positional_encoding_gaussian_matrix coords = 2 * np.pi * coords # outputs d_1 x ... x d_n x C shape return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) def forward(self, size: Tuple[int, int]) -> torch.Tensor: """Generate positional encoding for a grid of the specified size.""" h, w = size device = self.positional_encoding_gaussian_matrix.device grid = torch.ones([h, w], device=device, dtype=torch.float32) y_embed = grid.cumsum(dim=0) - 0.5 x_embed = grid.cumsum(dim=1) - 0.5 y_embed = y_embed / h x_embed = x_embed / w pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) return pe.permute(2, 0, 1) # C x H x W def forward_with_coords( self, coords_input: torch.Tensor, image_size: Tuple[int, int] ) -> torch.Tensor: """Positionally encode points that are not normalized to [0,1].""" coords = coords_input.clone() coords[:, :, 0] = coords[:, :, 0] / image_size[1] coords[:, :, 1] = coords[:, :, 1] / image_size[0] return self._pe_encoding(coords.to(torch.float)) # B x N x C class MaskDecoder(nn.Module): def __init__( self, *, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int, activation: Type[nn.Module], normalization_type: str, normalize_before_activation: bool, iou_head_depth: int, iou_head_hidden_dim: int, upscaling_layer_dims: List[int], ) -> None: """ Predicts masks given an image and prompt embeddings, using a transformer architecture. Arguments: transformer_dim (int): the channel dimension of the transformer transformer (nn.Module): the transformer used to predict masks num_multimask_outputs (int): the number of masks to predict when disambiguating masks activation (nn.Module): the type of activation to use when upscaling masks iou_head_depth (int): the depth of the MLP used to predict mask quality iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality """ super().__init__() self.transformer_dim = transformer_dim self.transformer = transformer self.num_multimask_outputs = num_multimask_outputs self.iou_token = nn.Embedding(1, transformer_dim) if num_multimask_outputs > 1: self.num_mask_tokens = num_multimask_outputs + 1 else: self.num_mask_tokens = 1 self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) output_dim_after_upscaling = transformer_dim self.final_output_upscaling_layers = nn.ModuleList([]) for idx, layer_dims in enumerate(upscaling_layer_dims): self.final_output_upscaling_layers.append( nn.Sequential( nn.ConvTranspose2d( output_dim_after_upscaling, layer_dims, kernel_size=2, stride=2, ), nn.GroupNorm(1, layer_dims) if idx < len(upscaling_layer_dims) - 1 else nn.Identity(), activation(), ) ) output_dim_after_upscaling = layer_dims self.output_hypernetworks_mlps = nn.ModuleList( [ MLPBlock( input_dim=transformer_dim, hidden_dim=transformer_dim, output_dim=output_dim_after_upscaling, num_layers=2, act=activation, ) for i in range(self.num_mask_tokens) ] ) self.iou_prediction_head = MLPBlock( input_dim=transformer_dim, hidden_dim=iou_head_hidden_dim, output_dim=self.num_mask_tokens, num_layers=iou_head_depth, act=activation, ) def forward( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, multimask_output: bool, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Predict masks given image and prompt embeddings. Arguments: image_embeddings: A tensor of shape [B, C, H, W] or [B*max_num_queries, C, H, W] image_pe (torch.Tensor): positional encoding with the shape of image_embeddings (the batch dimension is broadcastable). sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes multimask_output (bool): Whether to return multiple masks or a single mask. Returns: torch.Tensor: batched predicted masks torch.Tensor: batched predictions of mask quality """ ( batch_size, max_num_queries, sparse_embed_dim_1, sparse_embed_dim_2, ) = sparse_prompt_embeddings.shape ( _, image_embed_dim_c, image_embed_dim_h, image_embed_dim_w, ) = image_embeddings.shape # Tile the image embedding for all queries. image_embeddings_tiled = torch.tile( image_embeddings[:, None, :, :, :], [1, max_num_queries, 1, 1, 1] ).view( batch_size * max_num_queries, image_embed_dim_c, image_embed_dim_h, image_embed_dim_w, ) sparse_prompt_embeddings = sparse_prompt_embeddings.reshape( batch_size * max_num_queries, sparse_embed_dim_1, sparse_embed_dim_2 ) masks, iou_pred = self.predict_masks( image_embeddings=image_embeddings_tiled, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, ) if multimask_output and self.num_multimask_outputs > 1: return masks[:, 1:, :], iou_pred[:, 1:] else: return masks[:, :1, :], iou_pred[:, :1] def predict_masks( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """Predicts masks. See 'forward' for more details.""" # Concatenate output tokens output_tokens = torch.cat( [self.iou_token.weight, self.mask_tokens.weight], dim=0 ) output_tokens = output_tokens.unsqueeze(0).expand( sparse_prompt_embeddings.size(0), -1, -1 ) tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # Expand per-image data in batch direction to be per-mask pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) b, c, h, w = image_embeddings.shape hs, src = self.transformer(image_embeddings, pos_src, tokens) iou_token_out = hs[:, 0, :] mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] # Upscale mask embeddings and predict masks using the mask tokens upscaled_embedding = src.transpose(1, 2).view(b, c, h, w) for upscaling_layer in self.final_output_upscaling_layers: upscaled_embedding = upscaling_layer(upscaled_embedding) hyper_in_list: List[torch.Tensor] = [] for i, output_hypernetworks_mlp in enumerate(self.output_hypernetworks_mlps): hyper_in_list.append(output_hypernetworks_mlp(mask_tokens_out[:, i, :])) hyper_in = torch.stack(hyper_in_list, dim=1) b, c, h, w = upscaled_embedding.shape masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) # Generate mask quality predictions iou_pred = self.iou_prediction_head(iou_token_out) return masks, iou_pred