File size: 32,155 Bytes
641ff3e bafcf39 641ff3e bafcf39 9ae09da bde6e5b bafcf39 2a4b347 9ae09da bafcf39 bde6e5b bafcf39 e347a56 641ff3e d60759d e3365ed bafcf39 2878a94 9ae09da bafcf39 9ae09da 2878a94 bafcf39 9ae09da bafcf39 9ae09da e347a56 9ae09da 2148ddd 9ae09da 2148ddd bafcf39 9ae09da 2f34683 2148ddd 2f34683 2148ddd 9ae09da 2148ddd 9ae09da 2148ddd 9ae09da 2148ddd 2f34683 2148ddd 2f34683 9ae09da 2148ddd 9ae09da 2148ddd 9ae09da 2148ddd bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da 1cb1897 9ae09da 2878a94 9ae09da 2878a94 9ae09da 2878a94 bafcf39 9ae09da 4852fb5 44d987c 6ac4be4 4852fb5 1d772de 6ac4be4 4852fb5 6ac4be4 4852fb5 bafcf39 e3365ed bafcf39 e3365ed 641ff3e bafcf39 641ff3e a748df6 bafcf39 a748df6 641ff3e bafcf39 641ff3e bde6e5b 641ff3e bafcf39 641ff3e bafcf39 641ff3e bafcf39 641ff3e bafcf39 641ff3e bafcf39 641ff3e bde6e5b 641ff3e 44d987c 641ff3e bafcf39 641ff3e bafcf39 641ff3e bafcf39 641ff3e bafcf39 641ff3e 44d987c 641ff3e bafcf39 641ff3e bafcf39 641ff3e bafcf39 641ff3e bafcf39 bde6e5b 44d987c bde6e5b bafcf39 bde6e5b bafcf39 bde6e5b 44d987c bde6e5b bafcf39 44d987c bafcf39 bde6e5b bafcf39 bde6e5b bafcf39 bde6e5b bafcf39 bde6e5b 44d987c bde6e5b bafcf39 bde6e5b bafcf39 44d987c bafcf39 bde6e5b 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da 4c95b3c bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da 44d987c bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da 4c95b3c bafcf39 9ae09da bafcf39 9ae09da af187f0 4c95b3c bafcf39 44d987c bafcf39 4c95b3c 44d987c 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c af187f0 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c bafcf39 4c95b3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 |
from typing import List
import spacy
from presidio_analyzer import (
AnalyzerEngine,
EntityRecognizer,
Pattern,
PatternRecognizer,
RecognizerResult,
)
from presidio_analyzer.nlp_engine import (
NerModelConfiguration,
NlpArtifacts,
SpacyNlpEngine,
)
from spacy.matcher import Matcher
from spaczz.matcher import FuzzyMatcher
spacy.prefer_gpu()
import os
import re
import gradio as gr
import Levenshtein
import requests
from spacy.cli.download import download
from tools.config import (
CUSTOM_ENTITIES,
DEFAULT_LANGUAGE,
SPACY_MODEL_PATH,
TESSERACT_DATA_FOLDER,
)
score_threshold = 0.001
custom_entities = CUSTOM_ENTITIES
# Create a class inheriting from SpacyNlpEngine
class LoadedSpacyNlpEngine(SpacyNlpEngine):
def __init__(self, loaded_spacy_model, language_code: str):
super().__init__(
ner_model_configuration=NerModelConfiguration(
labels_to_ignore=["CARDINAL", "ORDINAL"]
)
) # Ignore non-relevant labels
self.nlp = {language_code: loaded_spacy_model}
def _base_language_code(language: str) -> str:
lang = _normalize_language_input(language)
if "_" in lang:
return lang.split("_")[0]
return lang
def load_spacy_model(language: str = DEFAULT_LANGUAGE):
"""
Load a spaCy model for the requested language and return it as `nlp`.
Accepts common inputs like: "en", "en_lg", "en_sm", "de", "fr", "es", "it", "nl", "pt", "zh", "ja", "xx".
Falls back through sensible candidates and will download if missing.
"""
# Set spaCy data path for custom model storage (only if specified)
import os
if SPACY_MODEL_PATH and SPACY_MODEL_PATH.strip():
os.environ["SPACY_DATA"] = SPACY_MODEL_PATH
print(f"Setting spaCy model path to: {SPACY_MODEL_PATH}")
else:
print("Using default spaCy model storage location")
synonyms = {
"english": "en",
"catalan": "ca",
"danish": "da",
"german": "de",
"french": "fr",
"greek": "el",
"finnish": "fi",
"croatian": "hr",
"lithuanian": "lt",
"macedonian": "mk",
"norwegian_bokmaal": "nb",
"polish": "pl",
"russian": "ru",
"slovenian": "sl",
"swedish": "sv",
"dutch": "nl",
"portuguese": "pt",
"chinese": "zh",
"japanese": "ja",
"multilingual": "xx",
}
lang_norm = _normalize_language_input(language)
lang_norm = synonyms.get(lang_norm, lang_norm)
base_lang = _base_language_code(lang_norm)
candidates_by_lang = {
# English - prioritize lg, then trf, then md, then sm
"en": [
"en_core_web_lg",
"en_core_web_trf",
"en_core_web_md",
"en_core_web_sm",
],
"en_lg": ["en_core_web_lg"],
"en_trf": ["en_core_web_trf"],
"en_md": ["en_core_web_md"],
"en_sm": ["en_core_web_sm"],
# Major languages (news pipelines) - prioritize lg, then md, then sm
"ca": ["ca_core_news_lg", "ca_core_news_md", "ca_core_news_sm"], # Catalan
"da": ["da_core_news_lg", "da_core_news_md", "da_core_news_sm"], # Danish
"de": ["de_core_news_lg", "de_core_news_md", "de_core_news_sm"], # German
"el": ["el_core_news_lg", "el_core_news_md", "el_core_news_sm"], # Greek
"es": ["es_core_news_lg", "es_core_news_md", "es_core_news_sm"], # Spanish
"fi": ["fi_core_news_lg", "fi_core_news_md", "fi_core_news_sm"], # Finnish
"fr": ["fr_core_news_lg", "fr_core_news_md", "fr_core_news_sm"], # French
"hr": ["hr_core_news_lg", "hr_core_news_md", "hr_core_news_sm"], # Croatian
"it": ["it_core_news_lg", "it_core_news_md", "it_core_news_sm"], # Italian
"ja": ["ja_core_news_lg", "ja_core_news_md", "ja_core_news_sm"], # Japanese
"ko": ["ko_core_news_lg", "ko_core_news_md", "ko_core_news_sm"], # Korean
"lt": ["lt_core_news_lg", "lt_core_news_md", "lt_core_news_sm"], # Lithuanian
"mk": ["mk_core_news_lg", "mk_core_news_md", "mk_core_news_sm"], # Macedonian
"nb": [
"nb_core_news_lg",
"nb_core_news_md",
"nb_core_news_sm",
], # Norwegian BokmΓ₯l
"nl": ["nl_core_news_lg", "nl_core_news_md", "nl_core_news_sm"], # Dutch
"pl": ["pl_core_news_lg", "pl_core_news_md", "pl_core_news_sm"], # Polish
"pt": ["pt_core_news_lg", "pt_core_news_md", "pt_core_news_sm"], # Portuguese
"ro": ["ro_core_news_lg", "ro_core_news_md", "ro_core_news_sm"], # Romanian
"ru": ["ru_core_news_lg", "ru_core_news_md", "ru_core_news_sm"], # Russian
"sl": ["sl_core_news_lg", "sl_core_news_md", "sl_core_news_sm"], # Slovenian
"sv": ["sv_core_news_lg", "sv_core_news_md", "sv_core_news_sm"], # Swedish
"uk": ["uk_core_news_lg", "uk_core_news_md", "uk_core_news_sm"], # Ukrainian
"zh": [
"zh_core_web_lg",
"zh_core_web_mod",
"zh_core_web_sm",
"zh_core_web_trf",
], # Chinese
# Multilingual NER
"xx": ["xx_ent_wiki_sm"],
}
if lang_norm in candidates_by_lang:
candidates = candidates_by_lang[lang_norm]
elif base_lang in candidates_by_lang:
candidates = candidates_by_lang[base_lang]
else:
# Fallback to multilingual if unknown
candidates = candidates_by_lang["xx"]
last_error = None
if language != "en":
print(
f"Attempting to load spaCy model for language '{language}' with candidates: {candidates}"
)
print(
"Note: Models are prioritized by size (lg > md > sm) - will stop after first successful load"
)
for i, candidate in enumerate(candidates):
if language != "en":
print(f"Trying candidate {i+1}/{len(candidates)}: {candidate}")
# Try importable package first (fast-path when installed as a package)
try:
module = __import__(candidate)
print(f"β Successfully imported spaCy model: {candidate}")
return module.load()
except Exception as e:
last_error = e
# Try spacy.load if package is linked/installed
try:
nlp = spacy.load(candidate)
print(f"β Successfully loaded spaCy model via spacy.load: {candidate}")
return nlp
except OSError:
# Model not found, proceed with download
print(f"Model {candidate} not found, attempting to download...")
try:
download(candidate)
print(f"β Successfully downloaded spaCy model: {candidate}")
# Refresh spaCy's model registry after download
import importlib
import sys
importlib.reload(spacy)
# Clear any cached imports that might interfere
if candidate in sys.modules:
del sys.modules[candidate]
# Small delay to ensure model is fully registered
import time
time.sleep(0.5)
# Try to load the downloaded model
nlp = spacy.load(candidate)
print(f"β Successfully loaded downloaded spaCy model: {candidate}")
return nlp
except Exception as download_error:
print(f"β Failed to download or load {candidate}: {download_error}")
# Try alternative loading methods
try:
# Try importing the module directly after download
module = __import__(candidate)
print(
f"β Successfully loaded {candidate} via direct import after download"
)
return module.load()
except Exception as import_error:
print(f"β Direct import also failed: {import_error}")
# Try one more approach - force spaCy to refresh its model registry
try:
from spacy.util import get_model_path
model_path = get_model_path(candidate)
if model_path and os.path.exists(model_path):
print(f"Found model at path: {model_path}")
nlp = spacy.load(model_path)
print(
f"β Successfully loaded {candidate} from path: {model_path}"
)
return nlp
except Exception as path_error:
print(f"β Path-based loading also failed: {path_error}")
last_error = download_error
continue
except Exception as e:
print(f"β Failed to load {candidate}: {e}")
last_error = e
continue
# Provide more helpful error message
error_msg = f"Failed to load spaCy model for language '{language}'"
if last_error:
error_msg += f". Last error: {last_error}"
error_msg += f". Tried candidates: {candidates}"
raise RuntimeError(error_msg)
# Language-aware spaCy model loader
def _normalize_language_input(language: str) -> str:
return language.strip().lower().replace("-", "_")
# Update the global variables to use the new function
ACTIVE_LANGUAGE_CODE = _base_language_code(DEFAULT_LANGUAGE)
nlp = None # Placeholder, will be loaded in the create_nlp_analyser function below #load_spacy_model(DEFAULT_LANGUAGE)
def get_tesseract_lang_code(short_code: str):
"""
Maps a two-letter language code to the corresponding Tesseract OCR code.
Args:
short_code (str): The two-letter language code (e.g., "en", "de").
Returns:
str or None: The Tesseract language code (e.g., "eng", "deu"),
or None if no mapping is found.
"""
# Mapping from 2-letter codes to Tesseract 3-letter codes
# Based on ISO 639-2/T codes.
lang_map = {
"en": "eng",
"de": "deu",
"fr": "fra",
"es": "spa",
"it": "ita",
"nl": "nld",
"pt": "por",
"zh": "chi_sim", # Mapping to Simplified Chinese by default
"ja": "jpn",
"ko": "kor",
"lt": "lit",
"mk": "mkd",
"nb": "nor",
"pl": "pol",
"ro": "ron",
"ru": "rus",
"sl": "slv",
"sv": "swe",
"uk": "ukr",
}
return lang_map.get(short_code)
def download_tesseract_lang_pack(
short_lang_code: str, tessdata_dir=TESSERACT_DATA_FOLDER
):
"""
Downloads a Tesseract language pack to a local directory.
Args:
lang_code (str): The short code for the language (e.g., "eng", "fra").
tessdata_dir (str, optional): The directory to save the language pack.
Defaults to "tessdata".
"""
# Create the directory if it doesn't exist
if not os.path.exists(tessdata_dir):
os.makedirs(tessdata_dir)
# Get the Tesseract language code
lang_code = get_tesseract_lang_code(short_lang_code)
if lang_code is None:
raise ValueError(
f"Language code {short_lang_code} not found in Tesseract language map"
)
# Set the local file path
file_path = os.path.join(tessdata_dir, f"{lang_code}.traineddata")
# Check if the file already exists
if os.path.exists(file_path):
print(f"Language pack {lang_code}.traineddata already exists at {file_path}")
return file_path
# Construct the URL for the language pack
url = f"https://raw.githubusercontent.com/tesseract-ocr/tessdata/main/{lang_code}.traineddata"
# Download the file
try:
response = requests.get(url, stream=True, timeout=60)
response.raise_for_status() # Raise an exception for bad status codes
with open(file_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Successfully downloaded {lang_code}.traineddata to {file_path}")
return file_path
except requests.exceptions.RequestException as e:
print(f"Error downloading {lang_code}.traineddata: {e}")
return None
#### Custom recognisers
def _is_regex_pattern(term: str) -> bool:
"""
Detect if a term is intended to be a regex pattern or a literal string.
Args:
term: The term to check
Returns:
True if the term appears to be a regex pattern, False if it's a literal string
"""
term = term.strip()
if not term:
return False
# First, try to compile as regex to validate it
# This catches patterns like \d\d\d-\d\d\d that use regex escape sequences
try:
re.compile(term)
is_valid_regex = True
except re.error:
# If it doesn't compile as regex, treat as literal
return False
# If it compiles, check if it contains regex-like features
# Regex metacharacters that suggest a pattern (excluding escaped literals)
regex_metacharacters = [
"+",
"*",
"?",
"{",
"}",
"[",
"]",
"(",
")",
"|",
"^",
"$",
".",
]
# Common regex escape sequences that indicate regex intent
regex_escape_sequences = [
"\\d",
"\\w",
"\\s",
"\\D",
"\\W",
"\\S",
"\\b",
"\\B",
"\\n",
"\\t",
"\\r",
]
# Check if term contains regex metacharacters or escape sequences
has_metacharacters = False
has_escape_sequences = False
i = 0
while i < len(term):
if term[i] == "\\" and i + 1 < len(term):
# Check if it's a regex escape sequence
escape_seq = term[i : i + 2]
if escape_seq in regex_escape_sequences:
has_escape_sequences = True
# Skip the escape sequence (backslash + next char)
i += 2
continue
if term[i] in regex_metacharacters:
has_metacharacters = True
i += 1
# If it's a valid regex and contains regex features, treat as regex pattern
if is_valid_regex and (has_metacharacters or has_escape_sequences):
return True
# If it compiles but has no regex features, it might be a literal that happens to compile
# (e.g., "test" compiles as regex but is just literal text)
# In this case, if it has escape sequences, it's definitely regex
if has_escape_sequences:
return True
# Otherwise, treat as literal
return False
def custom_word_list_recogniser(custom_list: List[str] = list()):
# Create regex pattern, handling quotes carefully
# Supports both literal strings and regex patterns
quote_str = '"'
replace_str = '(?:"|"|")'
regex_patterns = []
literal_patterns = []
# Separate regex patterns from literal strings
for term in custom_list:
term = term.strip()
if not term:
continue
if _is_regex_pattern(term):
# Use regex pattern as-is (but wrap with word boundaries if appropriate)
# Note: Word boundaries might not be appropriate for all regex patterns
# (e.g., email patterns), so we'll add them conditionally
regex_patterns.append(term)
else:
# Escape literal strings and add word boundaries
escaped_term = re.escape(term).replace(quote_str, replace_str)
literal_patterns.append(rf"(?<!\w){escaped_term}(?!\w)")
# Combine patterns: regex patterns first, then literal patterns
all_patterns = []
# Add regex patterns (without word boundaries, as they may have their own)
for pattern in regex_patterns:
all_patterns.append(f"({pattern})")
# Add literal patterns (with word boundaries)
all_patterns.extend(literal_patterns)
if not all_patterns:
# Return empty recognizer if no patterns
custom_pattern = Pattern(
name="custom_pattern", regex="(?!)", score=1
) # Never matches
else:
custom_regex = "|".join(all_patterns)
# print(custom_regex)
custom_pattern = Pattern(name="custom_pattern", regex=custom_regex, score=1)
custom_recogniser = PatternRecognizer(
supported_entity="CUSTOM",
name="CUSTOM",
patterns=[custom_pattern],
global_regex_flags=re.DOTALL | re.MULTILINE | re.IGNORECASE,
)
return custom_recogniser
# Initialise custom recogniser that will be overwritten later
custom_recogniser = custom_word_list_recogniser()
# Custom title recogniser
titles_list = [
"Sir",
"Ma'am",
"Madam",
"Mr",
"Mr.",
"Mrs",
"Mrs.",
"Ms",
"Ms.",
"Miss",
"Dr",
"Dr.",
"Professor",
]
titles_regex = (
"\\b" + "\\b|\\b".join(rf"{re.escape(title)}" for title in titles_list) + "\\b"
)
titles_pattern = Pattern(name="titles_pattern", regex=titles_regex, score=1)
titles_recogniser = PatternRecognizer(
supported_entity="TITLES",
name="TITLES",
patterns=[titles_pattern],
global_regex_flags=re.DOTALL | re.MULTILINE,
)
# %%
# Custom postcode recogniser
# Define the regex pattern in a Presidio `Pattern` object:
ukpostcode_pattern = Pattern(
name="ukpostcode_pattern",
regex=r"\b([A-Z]{1,2}\d[A-Z\d]? ?\d[A-Z]{2}|GIR ?0AA)\b",
score=1,
)
# Define the recognizer with one or more patterns
ukpostcode_recogniser = PatternRecognizer(
supported_entity="UKPOSTCODE", name="UKPOSTCODE", patterns=[ukpostcode_pattern]
)
### Street name
def extract_street_name(text: str) -> str:
"""
Extracts the street name and preceding word (that should contain at least one number) from the given text.
"""
street_types = [
"Street",
"St",
"Boulevard",
"Blvd",
"Highway",
"Hwy",
"Broadway",
"Freeway",
"Causeway",
"Cswy",
"Expressway",
"Way",
"Walk",
"Lane",
"Ln",
"Road",
"Rd",
"Avenue",
"Ave",
"Circle",
"Cir",
"Cove",
"Cv",
"Drive",
"Dr",
"Parkway",
"Pkwy",
"Park",
"Court",
"Ct",
"Square",
"Sq",
"Loop",
"Place",
"Pl",
"Parade",
"Estate",
"Alley",
"Arcade",
"Avenue",
"Ave",
"Bay",
"Bend",
"Brae",
"Byway",
"Close",
"Corner",
"Cove",
"Crescent",
"Cres",
"Cul-de-sac",
"Dell",
"Drive",
"Dr",
"Esplanade",
"Glen",
"Green",
"Grove",
"Heights",
"Hts",
"Mews",
"Parade",
"Path",
"Piazza",
"Promenade",
"Quay",
"Ridge",
"Row",
"Terrace",
"Ter",
"Track",
"Trail",
"View",
"Villas",
"Marsh",
"Embankment",
"Cut",
"Hill",
"Passage",
"Rise",
"Vale",
"Side",
]
# Dynamically construct the regex pattern with all possible street types
street_types_pattern = "|".join(
rf"{re.escape(street_type)}" for street_type in street_types
)
# The overall regex pattern to capture the street name and preceding word(s)
pattern = r"(?P<preceding_word>\w*\d\w*)\s*"
pattern += rf"(?P<street_name>\w+\s*\b(?:{street_types_pattern})\b)"
# Find all matches in text
matches = re.finditer(pattern, text, re.DOTALL | re.MULTILINE | re.IGNORECASE)
start_positions = list()
end_positions = list()
for match in matches:
match.group("preceding_word").strip()
match.group("street_name").strip()
start_pos = match.start()
end_pos = match.end()
# print(f"Start: {start_pos}, End: {end_pos}")
# print(f"Preceding words: {preceding_word}")
# print(f"Street name: {street_name}")
start_positions.append(start_pos)
end_positions.append(end_pos)
return start_positions, end_positions
class StreetNameRecognizer(EntityRecognizer):
def load(self) -> None:
"""No loading is required."""
pass
def analyze(
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts
) -> List[RecognizerResult]:
"""
Logic for detecting a specific PII
"""
start_pos, end_pos = extract_street_name(text)
results = list()
for i in range(0, len(start_pos)):
result = RecognizerResult(
entity_type="STREETNAME", start=start_pos[i], end=end_pos[i], score=1
)
results.append(result)
return results
street_recogniser = StreetNameRecognizer(supported_entities=["STREETNAME"])
## Custom fuzzy match recogniser for list of strings
def custom_fuzzy_word_list_regex(text: str, custom_list: List[str] = list()):
# Create regex pattern, handling quotes carefully
quote_str = '"'
replace_str = '(?:"|"|")'
custom_regex_pattern = "|".join(
rf"(?<!\w){re.escape(term.strip()).replace(quote_str, replace_str)}(?!\w)"
for term in custom_list
)
# Find all matches in text
matches = re.finditer(
custom_regex_pattern, text, re.DOTALL | re.MULTILINE | re.IGNORECASE
)
start_positions = list()
end_positions = list()
for match in matches:
start_pos = match.start()
end_pos = match.end()
start_positions.append(start_pos)
end_positions.append(end_pos)
return start_positions, end_positions
class CustomWordFuzzyRecognizer(EntityRecognizer):
def __init__(
self,
supported_entities: List[str],
custom_list: List[str] = list(),
spelling_mistakes_max: int = 1,
search_whole_phrase: bool = True,
):
super().__init__(supported_entities=supported_entities)
self.custom_list = custom_list # Store the custom_list as an instance attribute
self.spelling_mistakes_max = (
spelling_mistakes_max # Store the max spelling mistakes
)
self.search_whole_phrase = (
search_whole_phrase # Store the search whole phrase flag
)
def load(self) -> None:
"""No loading is required."""
pass
def analyze(
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts
) -> List[RecognizerResult]:
"""
Logic for detecting a specific PII
"""
start_pos, end_pos = spacy_fuzzy_search(
text, self.custom_list, self.spelling_mistakes_max, self.search_whole_phrase
) # Pass new parameters
results = list()
for i in range(0, len(start_pos)):
result = RecognizerResult(
entity_type="CUSTOM_FUZZY", start=start_pos[i], end=end_pos[i], score=1
)
results.append(result)
return results
custom_list_default = list()
custom_word_fuzzy_recognizer = CustomWordFuzzyRecognizer(
supported_entities=["CUSTOM_FUZZY"], custom_list=custom_list_default
)
# Pass the loaded model to the new LoadedSpacyNlpEngine
loaded_nlp_engine = LoadedSpacyNlpEngine(
loaded_spacy_model=nlp, language_code=ACTIVE_LANGUAGE_CODE
)
def create_nlp_analyser(
language: str = DEFAULT_LANGUAGE,
custom_list: List[str] = None,
spelling_mistakes_max: int = 1,
search_whole_phrase: bool = True,
existing_nlp_analyser: AnalyzerEngine = None,
return_also_model: bool = False,
):
"""
Create an nlp_analyser object based on the specified language input.
Args:
language (str): Language code (e.g., "en", "de", "fr", "es", etc.)
custom_list (List[str], optional): List of custom words to recognize. Defaults to None.
spelling_mistakes_max (int, optional): Maximum number of spelling mistakes for fuzzy matching. Defaults to 1.
search_whole_phrase (bool, optional): Whether to search for whole phrases or individual words. Defaults to True.
existing_nlp_analyser (AnalyzerEngine, optional): Existing nlp_analyser object to use. Defaults to None.
return_also_model (bool, optional): Whether to return the nlp_model object as well. Defaults to False.
Returns:
AnalyzerEngine: Configured nlp_analyser object with custom recognizers
"""
if existing_nlp_analyser is None:
pass
else:
if existing_nlp_analyser.supported_languages[0] == language:
nlp_analyser = existing_nlp_analyser
print(f"Using existing nlp_analyser for {language}")
return nlp_analyser
# Load spaCy model for the specified language
nlp_model = load_spacy_model(language)
# Get base language code
base_lang_code = _base_language_code(language)
# Create custom recognizers
if custom_list is None:
custom_list = list()
custom_recogniser = custom_word_list_recogniser(custom_list)
custom_word_fuzzy_recognizer = CustomWordFuzzyRecognizer(
supported_entities=["CUSTOM_FUZZY"],
custom_list=custom_list,
spelling_mistakes_max=spelling_mistakes_max,
search_whole_phrase=search_whole_phrase,
)
# Create NLP engine with loaded model
loaded_nlp_engine = LoadedSpacyNlpEngine(
loaded_spacy_model=nlp_model, language_code=base_lang_code
)
# Create analyzer engine
nlp_analyser = AnalyzerEngine(
nlp_engine=loaded_nlp_engine,
default_score_threshold=score_threshold,
supported_languages=[base_lang_code],
log_decision_process=False,
)
# Add custom recognizers to nlp_analyser
nlp_analyser.registry.add_recognizer(custom_recogniser)
nlp_analyser.registry.add_recognizer(custom_word_fuzzy_recognizer)
# Add language-specific recognizers for English
if base_lang_code == "en":
nlp_analyser.registry.add_recognizer(street_recogniser)
nlp_analyser.registry.add_recognizer(ukpostcode_recogniser)
nlp_analyser.registry.add_recognizer(titles_recogniser)
if return_also_model:
return nlp_analyser, nlp_model
return nlp_analyser
# Create the default nlp_analyser using the new function
nlp_analyser, nlp = create_nlp_analyser(DEFAULT_LANGUAGE, return_also_model=True)
def spacy_fuzzy_search(
text: str,
custom_query_list: List[str] = list(),
spelling_mistakes_max: int = 1,
search_whole_phrase: bool = True,
nlp=nlp,
progress=gr.Progress(track_tqdm=True),
):
"""Conduct fuzzy match on a list of text data."""
all_matches = list()
all_start_positions = list()
all_end_positions = list()
all_ratios = list()
# print("custom_query_list:", custom_query_list)
if not text:
out_message = "No text data found. Skipping page."
print(out_message)
return all_start_positions, all_end_positions
for string_query in custom_query_list:
query = nlp(string_query)
if search_whole_phrase is False:
# Keep only words that are not stop words
token_query = [
token.text
for token in query
if not token.is_space and not token.is_stop and not token.is_punct
]
spelling_mistakes_fuzzy_pattern = "FUZZY" + str(spelling_mistakes_max)
if len(token_query) > 1:
# pattern_lemma = [{"LEMMA": {"IN": query}}]
pattern_fuzz = [
{"TEXT": {spelling_mistakes_fuzzy_pattern: {"IN": token_query}}}
]
else:
# pattern_lemma = [{"LEMMA": query[0]}]
pattern_fuzz = [
{"TEXT": {spelling_mistakes_fuzzy_pattern: token_query[0]}}
]
matcher = Matcher(nlp.vocab)
matcher.add(string_query, [pattern_fuzz])
# matcher.add(string_query, [pattern_lemma])
else:
# If matching a whole phrase, use Spacy PhraseMatcher, then consider similarity after using Levenshtein distance.
# If you want to match the whole phrase, use phrase matcher
matcher = FuzzyMatcher(nlp.vocab)
patterns = [nlp.make_doc(string_query)] # Convert query into a Doc object
matcher.add("PHRASE", patterns, [{"ignore_case": True}])
batch_size = 256
docs = nlp.pipe([text], batch_size=batch_size)
# Get number of matches per doc
for doc in docs: # progress.tqdm(docs, desc = "Searching text", unit = "rows"):
matches = matcher(doc)
match_count = len(matches)
# If considering each sub term individually, append match. If considering together, consider weight of the relevance to that of the whole phrase.
if search_whole_phrase is False:
all_matches.append(match_count)
for match_id, start, end in matches:
span = str(doc[start:end]).strip()
query_search = str(query).strip()
# Convert word positions to character positions
start_char = doc[start].idx # Start character position
end_char = doc[end - 1].idx + len(
doc[end - 1]
) # End character position
# The positions here are word position, not character position
all_matches.append(match_count)
all_start_positions.append(start_char)
all_end_positions.append(end_char)
else:
for match_id, start, end, ratio, pattern in matches:
span = str(doc[start:end]).strip()
query_search = str(query).strip()
# Calculate Levenshtein distance. Only keep matches with less than specified number of spelling mistakes
distance = Levenshtein.distance(query_search.lower(), span.lower())
# print("Levenshtein distance:", distance)
if distance > spelling_mistakes_max:
match_count = match_count - 1
else:
# Convert word positions to character positions
start_char = doc[start].idx # Start character position
end_char = doc[end - 1].idx + len(
doc[end - 1]
) # End character position
all_matches.append(match_count)
all_start_positions.append(start_char)
all_end_positions.append(end_char)
all_ratios.append(ratio)
return all_start_positions, all_end_positions
|