# # Load in packages # + import os from typing import TypeVar from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS #PandasDataFrame: type[pd.core.frame.DataFrame] PandasDataFrame = TypeVar('pd.core.frame.DataFrame') # Disable cuda devices if necessary #os.environ['CUDA_VISIBLE_DEVICES'] = '-1' #from chatfuncs.chatfuncs import * import chatfuncs.ingest as ing ## Load preset embeddings and vectorstore embeddings_name = "thenlper/gte-base" def load_embeddings(embeddings_name = "thenlper/gte-base"): if embeddings_name == "hkunlp/instructor-large": embeddings_func = HuggingFaceInstructEmbeddings(model_name=embeddings_name, embed_instruction="Represent the paragraph for retrieval: ", query_instruction="Represent the question for retrieving supporting documents: " ) else: embeddings_func = HuggingFaceEmbeddings(model_name=embeddings_name) global embeddings embeddings = embeddings_func return embeddings def get_faiss_store(faiss_vstore_folder,embeddings): import zipfile with zipfile.ZipFile(faiss_vstore_folder + '/' + faiss_vstore_folder + '.zip', 'r') as zip_ref: zip_ref.extractall(faiss_vstore_folder) faiss_vstore = FAISS.load_local(folder_path=faiss_vstore_folder, embeddings=embeddings) os.remove(faiss_vstore_folder + "/index.faiss") os.remove(faiss_vstore_folder + "/index.pkl") global vectorstore vectorstore = faiss_vstore return vectorstore import chatfuncs.chatfuncs as chatf chatf.embeddings = load_embeddings(embeddings_name) chatf.vectorstore = get_faiss_store(faiss_vstore_folder="faiss_embedding",embeddings=globals()["embeddings"]) def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings): print(f"> Total split documents: {len(docs_out)}") print(docs_out) vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings) ''' #with open("vectorstore.pkl", "wb") as f: #pickle.dump(vectorstore, f) ''' #if Path(save_to).exists(): # vectorstore_func.save_local(folder_path=save_to) #else: # os.mkdir(save_to) # vectorstore_func.save_local(folder_path=save_to) #global vectorstore #vectorstore = vectorstore_func chatf.vectorstore = vectorstore_func out_message = "Document processing complete" #print(out_message) #print(f"> Saved to: {save_to}") return out_message, vectorstore_func # Gradio chat import gradio as gr block = gr.Blocks(css=".gradio-container {background-color: black}") with block: ingest_text = gr.State() ingest_metadata = gr.State() ingest_docs = gr.State() embeddings_state = gr.State(globals()["embeddings"]) vectorstore_state = gr.State(globals()["vectorstore"]) chat_history_state = gr.State() instruction_prompt_out = gr.State() gr.Markdown("

Lightweight PDF / web page QA bot

") gr.Markdown("Chat with a document (alpha). By default the Lambeth Borough Plan '[Lambeth 2030 : Our Future, Our Lambeth](https://www.lambeth.gov.uk/better-fairer-lambeth/projects/lambeth-2030-our-future-our-lambeth)' is loaded. If you want to talk about another document or web page (feature temporarily disabled), please select below. The chatbot will not answer questions where answered can't be found on the website. If switching topic, please click the 'New topic' button as the bot will assume follow up questions are linked to the first. Sources are shown underneath the chat area.\n\nWarnings: This is a public app. Please ensure that the document you upload is not sensitive is any way as other users may see it! Also, please note that LLM chatbots may give incomplete or incorrect information, so please use with care.") current_source = gr.Textbox(label="Current data source that is loaded into the app", value="Lambeth_2030-Our_Future_Our_Lambeth.pdf") with gr.Tab("Chatbot"): with gr.Row(): chatbot = gr.Chatbot(height=300) sources = gr.HTML(value = "Source paragraphs where I looked for answers will appear here", height=300) with gr.Row(): message = gr.Textbox( label="What's your question?", lines=1, ) submit = gr.Button(value="Send message", variant="secondary", scale = 1) examples_set = gr.Examples(label="Examples for the Lambeth Borough Plan", examples=[ "What were the five pillars of the previous borough plan?", "What is the vision statement for Lambeth?", "What are the commitments for Lambeth?", "What are the 2030 outcomes for Lambeth?"], inputs=message, ) with gr.Row(): current_topic = gr.Textbox(label="Keywords related to current conversation topic. If you want to talk about something else, press 'New topic'", placeholder="Keywords related to the conversation topic will appear here") clear = gr.Button(value="New topic", variant="secondary", scale=0) with gr.Tab("Load in a different PDF file or web page to chat"): with gr.Accordion("PDF file", open = False): in_pdf = gr.File(label="Upload pdf", file_count="multiple", file_types=['.pdf']) load_pdf = gr.Button(value="Load in file", variant="secondary", scale=0) with gr.Accordion("Web page", open = False): with gr.Row(): in_web = gr.Textbox(label="Enter webpage url") in_div = gr.Textbox(label="(Advanced) Webpage div for text extraction", value="p", placeholder="p") load_web = gr.Button(value="Load in webpage", variant="secondary", scale=0) ingest_embed_out = gr.Textbox(label="File/webpage preparation progress") gr.HTML( "
Powered by Flan Alpaca and Langchain
" ) #def hide_examples(): # return gr.Examples.update(visible=False) # Load in a pdf load_pdf_click = load_pdf.click(ing.parse_file, inputs=[in_pdf], outputs=[ingest_text, current_source]).\ then(ing.text_to_docs, inputs=[ingest_text], outputs=[ingest_docs]).\ then(docs_to_faiss_save, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state]) # #then(load_embeddings, outputs=[embeddings_state]).\ #then(hide_examples) # Load in a webpage load_web_click = load_web.click(ing.parse_html, inputs=[in_web, in_div], outputs=[ingest_text, ingest_metadata, current_source]).\ then(ing.html_text_to_docs, inputs=[ingest_text, ingest_metadata], outputs=[ingest_docs]).\ then(docs_to_faiss_save, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state]) #then(hide_examples) # Load in a webpage # Click/enter to send message action response_click = submit.click(chatf.get_history_sources_final_input_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state], outputs=[chat_history_state, sources, instruction_prompt_out], queue=False).\ then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\ then(chatf.produce_streaming_answer_chatbot_hf, inputs=[chatbot, instruction_prompt_out], outputs=chatbot) response_click.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\ then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\ then(lambda: gr.update(interactive=True), None, [message], queue=False) response_enter = message.submit(chatf.get_history_sources_final_input_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state], outputs=[chat_history_state, sources, instruction_prompt_out], queue=False).\ then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\ then(chatf.produce_streaming_answer_chatbot_hf, [chatbot, instruction_prompt_out], chatbot) response_enter.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\ then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\ then(lambda: gr.update(interactive=True), None, [message], queue=False) # Clear box clear.click(chatf.clear_chat, inputs=[chat_history_state, sources, message, current_topic], outputs=[chat_history_state, sources, message, current_topic]) clear.click(lambda: None, None, chatbot, queue=False) block.queue(concurrency_count=1).launch(debug=True) # -