import gradio as gr from transformers import pipeline from PIL import Image import requests def greet(name): # load pipe pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf") # load image url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) # inference depth = pipe(image)["depth"] return name+": " + depth iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()