Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
from PIL import Image
|
4 |
import requests
|
|
|
5 |
|
6 |
def greet(name):
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
12 |
image = Image.open(requests.get(url, stream=True).raw)
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
return name+": " + depth
|
17 |
|
18 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
|
|
1 |
import gradio as gr
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
from PIL import Image
|
6 |
import requests
|
7 |
+
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
8 |
|
9 |
def greet(name):
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
|
14 |
image = Image.open(requests.get(url, stream=True).raw)
|
15 |
+
|
16 |
+
image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf")
|
17 |
+
model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf")
|
18 |
+
|
19 |
+
# prepare image for the model
|
20 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
21 |
+
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
+
predicted_depth = outputs.predicted_depth
|
25 |
+
|
26 |
+
# interpolate to original size
|
27 |
+
prediction = torch.nn.functional.interpolate(
|
28 |
+
predicted_depth.unsqueeze(1),
|
29 |
+
size=image.size[::-1],
|
30 |
+
mode="bicubic",
|
31 |
+
align_corners=False,
|
32 |
+
)
|
33 |
+
|
34 |
+
# visualize the prediction
|
35 |
+
output = prediction.squeeze().cpu().numpy()
|
36 |
+
formatted = (output * 255 / np.max(output)).astype("uint8")
|
37 |
+
depth = Image.fromarray(formatted)
|
38 |
return name+": " + depth
|
39 |
|
40 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|