import glob import logging import math import os import random import shutil import time from itertools import repeat from multiprocessing.pool import ThreadPool from pathlib import Path from threading import Thread import cv2 import numpy as np import torch from PIL import Image, ExifTags from torch.utils.data import Dataset from tqdm import tqdm from utils.general import xyxy2xywh, xywh2xyxy, clean_str from utils.torch_utils import torch_distributed_zero_first # Parameters help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes logger = logging.getLogger(__name__) # Get orientation exif tag for orientation in ExifTags.TAGS.keys(): if ExifTags.TAGS[orientation] == 'Orientation': break def get_hash(files): # Returns a single hash value of a list of files return sum(os.path.getsize(f) for f in files if os.path.isfile(f)) def img2label_paths(img_paths): # Define label paths as a function of image paths sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths] def exif_size(img): # Returns exif-corrected PIL size s = img.size # (width, height) try: rotation = dict(img._getexif().items())[orientation] if rotation == 6: # rotation 270 s = (s[1], s[0]) elif rotation == 8: # rotation 90 s = (s[1], s[0]) except: pass return s def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False, rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''): # Make sure only the first process in DDP process the dataset first, and the following others can use the cache with torch_distributed_zero_first(rank): dataset = LoadFaceImagesAndLabels(path, imgsz, batch_size, augment=augment, # augment images hyp=hyp, # augmentation hyperparameters rect=rect, # rectangular training cache_images=cache, single_cls=opt.single_cls, stride=int(stride), pad=pad, image_weights=image_weights, ) batch_size = min(batch_size, len(dataset)) nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader() dataloader = loader(dataset, batch_size=batch_size, num_workers=nw, sampler=sampler, pin_memory=True, collate_fn=LoadFaceImagesAndLabels.collate_fn4 if quad else LoadFaceImagesAndLabels.collate_fn) return dataloader, dataset class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader): """ Dataloader that reuses workers Uses same syntax as vanilla DataLoader """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) self.iterator = super().__iter__() def __len__(self): return len(self.batch_sampler.sampler) def __iter__(self): for i in range(len(self)): yield next(self.iterator) class _RepeatSampler(object): """ Sampler that repeats forever Args: sampler (Sampler) """ def __init__(self, sampler): self.sampler = sampler def __iter__(self): while True: yield from iter(self.sampler) class LoadFaceImagesAndLabels(Dataset): # for training/testing def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1): self.img_size = img_size self.augment = augment self.hyp = hyp self.image_weights = image_weights self.rect = False if image_weights else rect self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) self.mosaic_border = [-img_size // 2, -img_size // 2] self.stride = stride try: f = [] # image files for p in path if isinstance(path, list) else [path]: p = Path(p) # os-agnostic if p.is_dir(): # dir f += glob.glob(str(p / '**' / '*.*'), recursive=True) elif p.is_file(): # file with open(p, 'r') as t: t = t.read().strip().splitlines() parent = str(p.parent) + os.sep f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path else: raise Exception('%s does not exist' % p) self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats]) assert self.img_files, 'No images found' except Exception as e: raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url)) # Check cache self.label_files = img2label_paths(self.img_files) # labels cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels if cache_path.is_file(): cache = torch.load(cache_path) # load if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed cache = self.cache_labels(cache_path) # re-cache else: cache = self.cache_labels(cache_path) # cache # Display cache [nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted" tqdm(None, desc=desc, total=n, initial=n) assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}' # Read cache cache.pop('hash') # remove hash labels, shapes = zip(*cache.values()) self.labels = list(labels) self.shapes = np.array(shapes, dtype=np.float64) self.img_files = list(cache.keys()) # update self.label_files = img2label_paths(cache.keys()) # update if single_cls: for x in self.labels: x[:, 0] = 0 n = len(shapes) # number of images bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index nb = bi[-1] + 1 # number of batches self.batch = bi # batch index of image self.n = n self.indices = range(n) # Rectangular Training if self.rect: # Sort by aspect ratio s = self.shapes # wh ar = s[:, 1] / s[:, 0] # aspect ratio irect = ar.argsort() self.img_files = [self.img_files[i] for i in irect] self.label_files = [self.label_files[i] for i in irect] self.labels = [self.labels[i] for i in irect] self.shapes = s[irect] # wh ar = ar[irect] # Set training image shapes shapes = [[1, 1]] * nb for i in range(nb): ari = ar[bi == i] mini, maxi = ari.min(), ari.max() if maxi < 1: shapes[i] = [maxi, 1] elif mini > 1: shapes[i] = [1, 1 / mini] self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) self.imgs = [None] * n if cache_images: gb = 0 # Gigabytes of cached images self.img_hw0, self.img_hw = [None] * n, [None] * n results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads pbar = tqdm(enumerate(results), total=n) for i, x in pbar: self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i) gb += self.imgs[i].nbytes pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9) def cache_labels(self, path=Path('./labels.cache')): # Cache dataset labels, check images and read shapes x = {} # dict nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files)) for i, (im_file, lb_file) in enumerate(pbar): try: # verify images im = Image.open(im_file) im.verify() # PIL verify shape = exif_size(im) # image size assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels' # verify labels if os.path.isfile(lb_file): nf += 1 # label found with open(lb_file, 'r') as f: l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels if len(l): assert l.shape[1] == 15, 'labels require 15 columns each' assert (l >= -1).all(), 'negative labels' assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels' assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels' else: ne += 1 # label empty l = np.zeros((0, 15), dtype=np.float32) else: nm += 1 # label missing l = np.zeros((0, 15), dtype=np.float32) x[im_file] = [l, shape] except Exception as e: nc += 1 print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file, e)) pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \ f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted" if nf == 0: print(f'WARNING: No labels found in {path}. See {help_url}') x['hash'] = get_hash(self.label_files + self.img_files) x['results'] = [nf, nm, ne, nc, i + 1] torch.save(x, path) # save for next time logging.info(f"New cache created: {path}") return x def __len__(self): return len(self.img_files) # def __iter__(self): # self.count = -1 # print('ran dataset iter') # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) # return self def __getitem__(self, index): index = self.indices[index] # linear, shuffled, or image_weights hyp = self.hyp mosaic = self.mosaic and random.random() < hyp['mosaic'] if mosaic: # Load mosaic img, labels = load_mosaic_face(self, index) shapes = None # MixUp https://arxiv.org/pdf/1710.09412.pdf if random.random() < hyp['mixup']: img2, labels2 = load_mosaic_face(self, random.randint(0, self.n - 1)) r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0 img = (img * r + img2 * (1 - r)).astype(np.uint8) labels = np.concatenate((labels, labels2), 0) else: # Load image img, (h0, w0), (h, w) = load_image(self, index) # Letterbox shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling # Load labels labels = [] x = self.labels[index] if x.size > 0: # Normalized xywh to pixel xyxy format labels = x.copy() labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0] labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1] #labels[:, 5] = ratio[0] * w * x[:, 5] + pad[0] # pad width labels[:, 5] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 5] + pad[0]) + ( np.array(x[:, 5] > 0, dtype=np.int32) - 1) labels[:, 6] = np.array(x[:, 6] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 6] + pad[1]) + ( np.array(x[:, 6] > 0, dtype=np.int32) - 1) labels[:, 7] = np.array(x[:, 7] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 7] + pad[0]) + ( np.array(x[:, 7] > 0, dtype=np.int32) - 1) labels[:, 8] = np.array(x[:, 8] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 8] + pad[1]) + ( np.array(x[:, 8] > 0, dtype=np.int32) - 1) labels[:, 9] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 9] + pad[0]) + ( np.array(x[:, 9] > 0, dtype=np.int32) - 1) labels[:, 10] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 10] + pad[1]) + ( np.array(x[:, 10] > 0, dtype=np.int32) - 1) labels[:, 11] = np.array(x[:, 11] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 11] + pad[0]) + ( np.array(x[:, 11] > 0, dtype=np.int32) - 1) labels[:, 12] = np.array(x[:, 12] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 12] + pad[1]) + ( np.array(x[:, 12] > 0, dtype=np.int32) - 1) labels[:, 13] = np.array(x[:, 13] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 13] + pad[0]) + ( np.array(x[:, 13] > 0, dtype=np.int32) - 1) labels[:, 14] = np.array(x[:, 14] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 14] + pad[1]) + ( np.array(x[:, 14] > 0, dtype=np.int32) - 1) if self.augment: # Augment imagespace if not mosaic: img, labels = random_perspective(img, labels, degrees=hyp['degrees'], translate=hyp['translate'], scale=hyp['scale'], shear=hyp['shear'], perspective=hyp['perspective']) # Augment colorspace augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) # Apply cutouts # if random.random() < 0.9: # labels = cutout(img, labels) nL = len(labels) # number of labels if nL: labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1 labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1 labels[:, [5, 7, 9, 11, 13]] /= img.shape[1] # normalized landmark x 0-1 labels[:, [5, 7, 9, 11, 13]] = np.where(labels[:, [5, 7, 9, 11, 13]] < 0, -1, labels[:, [5, 7, 9, 11, 13]]) labels[:, [6, 8, 10, 12, 14]] /= img.shape[0] # normalized landmark y 0-1 labels[:, [6, 8, 10, 12, 14]] = np.where(labels[:, [6, 8, 10, 12, 14]] < 0, -1, labels[:, [6, 8, 10, 12, 14]]) if self.augment: # flip up-down if random.random() < hyp['flipud']: img = np.flipud(img) if nL: labels[:, 2] = 1 - labels[:, 2] labels[:, 6] = np.where(labels[:,6] < 0, -1, 1 - labels[:, 6]) labels[:, 8] = np.where(labels[:, 8] < 0, -1, 1 - labels[:, 8]) labels[:, 10] = np.where(labels[:, 10] < 0, -1, 1 - labels[:, 10]) labels[:, 12] = np.where(labels[:, 12] < 0, -1, 1 - labels[:, 12]) labels[:, 14] = np.where(labels[:, 14] < 0, -1, 1 - labels[:, 14]) # flip left-right if random.random() < hyp['fliplr']: img = np.fliplr(img) if nL: labels[:, 1] = 1 - labels[:, 1] labels[:, 5] = np.where(labels[:, 5] < 0, -1, 1 - labels[:, 5]) labels[:, 7] = np.where(labels[:, 7] < 0, -1, 1 - labels[:, 7]) labels[:, 9] = np.where(labels[:, 9] < 0, -1, 1 - labels[:, 9]) labels[:, 11] = np.where(labels[:, 11] < 0, -1, 1 - labels[:, 11]) labels[:, 13] = np.where(labels[:, 13] < 0, -1, 1 - labels[:, 13]) #左右镜像的时候,左眼、右眼, 左嘴角、右嘴角无法区分, 应该交换位置,便于网络学习 eye_left = np.copy(labels[:, [5, 6]]) mouth_left = np.copy(labels[:, [11, 12]]) labels[:, [5, 6]] = labels[:, [7, 8]] labels[:, [7, 8]] = eye_left labels[:, [11, 12]] = labels[:, [13, 14]] labels[:, [13, 14]] = mouth_left labels_out = torch.zeros((nL, 16)) if nL: labels_out[:, 1:] = torch.from_numpy(labels) #showlabels(img, labels[:, 1:5], labels[:, 5:15]) # Convert img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) #print(index, ' --- labels_out: ', labels_out) #if nL: #print( ' : landmarks : ', torch.max(labels_out[:, 5:15]), ' --- ', torch.min(labels_out[:, 5:15])) return torch.from_numpy(img), labels_out, self.img_files[index], shapes @staticmethod def collate_fn(batch): img, label, path, shapes = zip(*batch) # transposed for i, l in enumerate(label): l[:, 0] = i # add target image index for build_targets() return torch.stack(img, 0), torch.cat(label, 0), path, shapes def showlabels(img, boxs, landmarks): for box in boxs: x,y,w,h = box[0] * img.shape[1], box[1] * img.shape[0], box[2] * img.shape[1], box[3] * img.shape[0] #cv2.rectangle(image, (x,y), (x+w,y+h), (0,255,0), 2) cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2) for landmark in landmarks: #cv2.circle(img,(60,60),30,(0,0,255)) for i in range(5): cv2.circle(img, (int(landmark[2*i] * img.shape[1]), int(landmark[2*i+1]*img.shape[0])), 3 ,(0,0,255), -1) cv2.imshow('test', img) cv2.waitKey(0) def load_mosaic_face(self, index): # loads images in a mosaic labels4 = [] s = self.img_size yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices for i, index in enumerate(indices): # Load image img, _, (h, w) = load_image(self, index) # place img in img4 if i == 0: # top left img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) elif i == 1: # top right x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h elif i == 2: # bottom left x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) elif i == 3: # bottom right x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] padw = x1a - x1b padh = y1a - y1b # Labels x = self.labels[index] labels = x.copy() if x.size > 0: # Normalized xywh to pixel xyxy format #box, x1,y1,x2,y2 labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh #10 landmarks labels[:, 5] = np.array(x[:, 5] > 0, dtype=np.int32) * (w * x[:, 5] + padw) + (np.array(x[:, 5] > 0, dtype=np.int32) - 1) labels[:, 6] = np.array(x[:, 6] > 0, dtype=np.int32) * (h * x[:, 6] + padh) + (np.array(x[:, 6] > 0, dtype=np.int32) - 1) labels[:, 7] = np.array(x[:, 7] > 0, dtype=np.int32) * (w * x[:, 7] + padw) + (np.array(x[:, 7] > 0, dtype=np.int32) - 1) labels[:, 8] = np.array(x[:, 8] > 0, dtype=np.int32) * (h * x[:, 8] + padh) + (np.array(x[:, 8] > 0, dtype=np.int32) - 1) labels[:, 9] = np.array(x[:, 9] > 0, dtype=np.int32) * (w * x[:, 9] + padw) + (np.array(x[:, 9] > 0, dtype=np.int32) - 1) labels[:, 10] = np.array(x[:, 10] > 0, dtype=np.int32) * (h * x[:, 10] + padh) + (np.array(x[:, 10] > 0, dtype=np.int32) - 1) labels[:, 11] = np.array(x[:, 11] > 0, dtype=np.int32) * (w * x[:, 11] + padw) + (np.array(x[:, 11] > 0, dtype=np.int32) - 1) labels[:, 12] = np.array(x[:, 12] > 0, dtype=np.int32) * (h * x[:, 12] + padh) + (np.array(x[:, 12] > 0, dtype=np.int32) - 1) labels[:, 13] = np.array(x[:, 13] > 0, dtype=np.int32) * (w * x[:, 13] + padw) + (np.array(x[:, 13] > 0, dtype=np.int32) - 1) labels[:, 14] = np.array(x[:, 14] > 0, dtype=np.int32) * (h * x[:, 14] + padh) + (np.array(x[:, 14] > 0, dtype=np.int32) - 1) labels4.append(labels) # Concat/clip labels if len(labels4): labels4 = np.concatenate(labels4, 0) np.clip(labels4[:, 1:5], 0, 2 * s, out=labels4[:, 1:5]) # use with random_perspective # img4, labels4 = replicate(img4, labels4) # replicate #landmarks labels4[:, 5:] = np.where(labels4[:, 5:] < 0, -1, labels4[:, 5:]) labels4[:, 5:] = np.where(labels4[:, 5:] > 2 * s, -1, labels4[:, 5:]) labels4[:, 5] = np.where(labels4[:, 6] == -1, -1, labels4[:, 5]) labels4[:, 6] = np.where(labels4[:, 5] == -1, -1, labels4[:, 6]) labels4[:, 7] = np.where(labels4[:, 8] == -1, -1, labels4[:, 7]) labels4[:, 8] = np.where(labels4[:, 7] == -1, -1, labels4[:, 8]) labels4[:, 9] = np.where(labels4[:, 10] == -1, -1, labels4[:, 9]) labels4[:, 10] = np.where(labels4[:, 9] == -1, -1, labels4[:, 10]) labels4[:, 11] = np.where(labels4[:, 12] == -1, -1, labels4[:, 11]) labels4[:, 12] = np.where(labels4[:, 11] == -1, -1, labels4[:, 12]) labels4[:, 13] = np.where(labels4[:, 14] == -1, -1, labels4[:, 13]) labels4[:, 14] = np.where(labels4[:, 13] == -1, -1, labels4[:, 14]) # Augment img4, labels4 = random_perspective(img4, labels4, degrees=self.hyp['degrees'], translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], perspective=self.hyp['perspective'], border=self.mosaic_border) # border to remove return img4, labels4 # Ancillary functions -------------------------------------------------------------------------------------------------- def load_image(self, index): # loads 1 image from dataset, returns img, original hw, resized hw img = self.imgs[index] if img is None: # not cached path = self.img_files[index] img = cv2.imread(path) # BGR assert img is not None, 'Image Not Found ' + path h0, w0 = img.shape[:2] # orig hw r = self.img_size / max(h0, w0) # resize image to img_size if r != 1: # always resize down, only resize up if training with augmentation interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp) return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized else: return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) dtype = img.dtype # uint8 x = np.arange(0, 256, dtype=np.int16) lut_hue = ((x * r[0]) % 180).astype(dtype) lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) lut_val = np.clip(x * r[2], 0, 255).astype(dtype) img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed # Histogram equalization # if random.random() < 0.2: # for i in range(3): # img[:, :, i] = cv2.equalizeHist(img[:, :, i]) def replicate(img, labels): # Replicate labels h, w = img.shape[:2] boxes = labels[:, 1:].astype(int) x1, y1, x2, y2 = boxes.T s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices x1b, y1b, x2b, y2b = boxes[i] bh, bw = y2b - y1b, x2b - x1b yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) return img, labels def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232 shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better test mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding elif scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return img, ratio, (dw, dh) def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # targets = [cls, xyxy] height = img.shape[0] + border[0] * 2 # shape(h,w,c) width = img.shape[1] + border[1] * 2 # Center C = np.eye(3) C[0, 2] = -img.shape[1] / 2 # x translation (pixels) C[1, 2] = -img.shape[0] / 2 # y translation (pixels) # Perspective P = np.eye(3) P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) # Rotation and Scale R = np.eye(3) a = random.uniform(-degrees, degrees) # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations s = random.uniform(1 - scale, 1 + scale) # s = 2 ** random.uniform(-scale, scale) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) # Shear S = np.eye(3) S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) # Translation T = np.eye(3) T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) # Combined rotation matrix M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed if perspective: img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114)) else: # affine img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) # Visualize # import matplotlib.pyplot as plt # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() # ax[0].imshow(img[:, :, ::-1]) # base # ax[1].imshow(img2[:, :, ::-1]) # warped # Transform label coordinates n = len(targets) if n: # warp points #xy = np.ones((n * 4, 3)) xy = np.ones((n * 9, 3)) xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]].reshape(n * 9, 2) # x1y1, x2y2, x1y2, x2y1 xy = xy @ M.T # transform if perspective: xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 18) # rescale else: # affine xy = xy[:, :2].reshape(n, 18) # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] landmarks = xy[:, [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]] mask = np.array(targets[:, 5:] > 0, dtype=np.int32) landmarks = landmarks * mask landmarks = landmarks + mask - 1 landmarks = np.where(landmarks < 0, -1, landmarks) landmarks[:, [0, 2, 4, 6, 8]] = np.where(landmarks[:, [0, 2, 4, 6, 8]] > width, -1, landmarks[:, [0, 2, 4, 6, 8]]) landmarks[:, [1, 3, 5, 7, 9]] = np.where(landmarks[:, [1, 3, 5, 7, 9]] > height, -1,landmarks[:, [1, 3, 5, 7, 9]]) landmarks[:, 0] = np.where(landmarks[:, 1] == -1, -1, landmarks[:, 0]) landmarks[:, 1] = np.where(landmarks[:, 0] == -1, -1, landmarks[:, 1]) landmarks[:, 2] = np.where(landmarks[:, 3] == -1, -1, landmarks[:, 2]) landmarks[:, 3] = np.where(landmarks[:, 2] == -1, -1, landmarks[:, 3]) landmarks[:, 4] = np.where(landmarks[:, 5] == -1, -1, landmarks[:, 4]) landmarks[:, 5] = np.where(landmarks[:, 4] == -1, -1, landmarks[:, 5]) landmarks[:, 6] = np.where(landmarks[:, 7] == -1, -1, landmarks[:, 6]) landmarks[:, 7] = np.where(landmarks[:, 6] == -1, -1, landmarks[:, 7]) landmarks[:, 8] = np.where(landmarks[:, 9] == -1, -1, landmarks[:, 8]) landmarks[:, 9] = np.where(landmarks[:, 8] == -1, -1, landmarks[:, 9]) targets[:,5:] = landmarks xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # # apply angle-based reduction of bounding boxes # radians = a * math.pi / 180 # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5 # x = (xy[:, 2] + xy[:, 0]) / 2 # y = (xy[:, 3] + xy[:, 1]) / 2 # w = (xy[:, 2] - xy[:, 0]) * reduction # h = (xy[:, 3] - xy[:, 1]) * reduction # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T # clip boxes xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) # filter candidates i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T) targets = targets[i] targets[:, 1:5] = xy[i] return img, targets def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n) # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio w1, h1 = box1[2] - box1[0], box1[3] - box1[1] w2, h2 = box2[2] - box2[0], box2[3] - box2[1] ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates def cutout(image, labels): # Applies image cutout augmentation https://arxiv.org/abs/1708.04552 h, w = image.shape[:2] def bbox_ioa(box1, box2): # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2 box2 = box2.transpose() # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] # Intersection area inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) # box2 area box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16 # Intersection over box2 area return inter_area / box2_area # create random masks scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction for s in scales: mask_h = random.randint(1, int(h * s)) mask_w = random.randint(1, int(w * s)) # box xmin = max(0, random.randint(0, w) - mask_w // 2) ymin = max(0, random.randint(0, h) - mask_h // 2) xmax = min(w, xmin + mask_w) ymax = min(h, ymin + mask_h) # apply random color mask image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] # return unobscured labels if len(labels) and s > 0.03: box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area labels = labels[ioa < 0.60] # remove >60% obscured labels return labels def create_folder(path='./new'): # Create folder if os.path.exists(path): shutil.rmtree(path) # delete output folder os.makedirs(path) # make new output folder def flatten_recursive(path='../coco128'): # Flatten a recursive directory by bringing all files to top level new_path = Path(path + '_flat') create_folder(new_path) for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)): shutil.copyfile(file, new_path / Path(file).name) def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128') # Convert detection dataset into classification dataset, with one directory per class path = Path(path) # images dir shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing files = list(path.rglob('*.*')) n = len(files) # number of files for im_file in tqdm(files, total=n): if im_file.suffix[1:] in img_formats: # image im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB h, w = im.shape[:2] # labels lb_file = Path(img2label_paths([str(im_file)])[0]) if Path(lb_file).exists(): with open(lb_file, 'r') as f: lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels for j, x in enumerate(lb): c = int(x[0]) # class f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename if not f.parent.is_dir(): f.parent.mkdir(parents=True) b = x[1:] * [w, h, w, h] # box # b[2:] = b[2:].max() # rectangle to square b[2:] = b[2:] * 1.2 + 3 # pad b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image b[[1, 3]] = np.clip(b[[1, 3]], 0, h) assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128') """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files # Arguments path: Path to images directory weights: Train, val, test weights (list) """ path = Path(path) # images dir files = list(path.rglob('*.*')) n = len(files) # number of files indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing for i, img in tqdm(zip(indices, files), total=n): if img.suffix[1:] in img_formats: with open(path / txt[i], 'a') as f: f.write(str(img) + '\n') # add image to txt file